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Abstract

This paper investigates the asymmetric out-of-sample predictability of macroeconomic vari-

ables for the real exchange rate between the United States and Korea. While conventional models

often suggest that the bilateral real exchange rate is primarily driven by the relative economic

performance of the two countries, our research highlights the superior predictive power of latent

factors obtained from U.S. economic variables, while Korean factors fail to enhance predictabil-

ity and often act as noise. We attribute the strong predictability of U.S. factors to significant

cross-correlations observed among a panel of bilateral real exchange rates vis-à-vis the U.S.

dollar, indicating a limited role for idiosyncratic factors associated with smaller economies. Our

major findings are based on data from the pre-COVID19 era. We further explore how economic

crises disrupt this relationship, resulting in temporary yet persistent disconnects between the

real exchange rate and macroeconomic fundamentals.
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1 Introduction

This paper investigates the asymmetric predictability of macroeconomic variables for the real ex-

change rate between the United States and Korea. Employing a data-driven approach, we evaluate

the out-of-sample forecastability of latent factors obtained from a large panel of macro predictors

for each country. Our empirical results demonstrate that factor augmented forecasting models

outperform commonly used benchmark models only when U.S. factors are utilized.

A substantial body of research demonstrates that exchange rate models often fail to outperform

the random walk (RW) model in out-of-sample forecasting. Since the seminal work of Meese

and Rogoff (1983), studies such as Cheung, Chinn, and Pascual (2005) confirmed the weak link

between exchange rates and economic fundamentals. In a subsequent study, limited success has

been reported by Engel and Hamilton (1990) and Cheung, Chinn, Pascual, and Zhang (2019).

Some studies suggest that exchange rate models perform better over longer horizons. See, among

others, Mark (1995), Chinn and Meese (1995), and Groen (2005). Using over two-centuries of

data, Lothian and Taylor (1996) reported strong out-of-sample predictability of fundamentals for

the real exchange rate. Engel, Mark, and West (2008) highlighted improved forecastability using

panel techniques.1 However, Engel and Wu (2023) showed challenges remain particularly when

accounting for small-sample bias.2

The pioneering work of Stock and Watson (2002) initiated the use of latent common factors

through principal components (PC) analysis for forecasting macroeconomic variables, including

exchange rates. Researchers have leveraged large panels of time series data for deeper insights

into exchange rate dynamics. For example, Engel, Mark, and West (2015) used cross-section

information regarding the deviations of 17 bilateral exchange rates from fundamentals, and show

that these factor-based forecasting models often outperformed the RW model, especially post-

1999. Chen, Jackson, Kim, and Resiandini (2014) extracted PC factors from 50 commodity prices,

linking the first factor to the dollar exchange rate, yielding superior out-of-sample predictions for

the dollar exchange rate. Greenaway-McGrevy, Mark, Sul, and Wu (2018) showed exchange rates

are driven by dollar and euro factors, with their model outperforming the RW model. Verdelhan

(2018) used international currency portfolios to identify dollar and carry factors that effectively

explained exchange rate dynamics, while Eichenbaum, Johannsen, and Rebelo (2021) highlighted

foreign demand for dollar-denominated bonds as a key driver of exchange rate dynamics.

While principal component (PC) analysis is widely used in the forecasting and empirical macro-

economics literature, Boivin and Ng (2006) noted its limitations when relevant predictive informa-

tion is dominated by other factors within the analysis. This is because PC extracts latent common

1Rapach and Wohar (2004), Groen (2000), and Mark and Sul (2001) also reported panel evidence that demonstrate
a close link between monetary models and exchange rate dynamics.

2 Incorporating Taylor Rule fundamentals has shown promise in understanding exchange rate dynamics. Notable
contributions include Engel, Mark, and West (2008), Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008), Molodtsova
and Papell (2009), Molodtsova and Papell (2013), and Ince, Molodtsova, and Papell (2016) for improving forecast
accuracy, while many studies report in-sample evidence that Taylor rule fundamentals enhance understanding of
exchange rate dynamics. See among others, Mark (2009), Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008), Engel
and West (2006), Clarida and Waldman (2008), and Kim, Fujiwara, Hansen, and Ogaki (2015).
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factors without explicitly accounting for the relationship between predictors and the target vari-

able. To overcome this, we explore alternative data dimensionality reduction methods such as

partial least squares (PLS), introduced by Wold (1982). Unlike PC, PLS leverages the covariance

structure between target and predictor variables to generate target-specific factors.3 For further

comparisons between PC and PLS approaches, see among others, Kelly and Pruitt (2015) and

Groen and Kapetanios (2016). In line with Bai and Ng (2008) and Kelly and Pruitt (2015), the

Least Absolute Shrinkage and Selection Operator (LASSO) technique is also employed to select

target-specific groups of predictors from the full dataset, extracting more relevant factors for the

target variable.

In this paper, we evaluate and compare the predictability of latent common factors for the

dollar/won real exchange rate. Utilizing principal component (PC) analysis and partial least squares

(PLS), and the LASSO method in combination with PC and PLS, we estimate common factors from

125 U.S. and 192 Korean monthly frequency time series variables. Our analysis primarily focuses on

the pre-COVID19 sample period, followed by a discussion of the temporary yet persistent disconnect

between the dollar/won real exchange rate and its underlying fundamentals.

We reveal asymmetric predictability of latent factors for the real exchange rate. Specifically,

our factor-augmented forecasting models outperform benchmark models only when U.S. factors are

utilized, while Korean factors yield limited predictive contents. These findings call into question the

conventional assumption that bilateral real exchange rates are determined by the relative economic

performance of the two countries. Our research suggests that this assumption may not hold in cases

where the economies involved are asymmetrically sized, as with the U.S. and Korea. We attribute

the superior predictability of U.S. factors to the strong cross-correlations observed between bilateral

real exchange rates vis-à-vis the U.S. dollar.

Our findings also indicate that the models perform better at shorter horizons when incorporat-

ing U.S. nominal/financial market factors. Conversely, models that incorporate U.S. real activity

factors outperform benchmark models at longer horizons. These results align with the findings

of Boivin and Ng (2006), who emphasized the importance of extracting more informative content

from subsets of predictors. Our approach also aligns with that of Ca’Zorzi and Rubaszek (2023)

in the sense that we extract a smaller number of useful latent factors from a large panel of macro

predictors.4

To the best of my knowledge, this paper presents the seminal attempt to evaluate the relative

predictability by applying data dimensionality reduction methods to extensive panels of macroeco-

nomic data for both the U.S. and Korea. Closely related studies include Engel, Mark, and West

(2015), Ca’Zorzi and Rubaszek (2020), and Ca’Zorzi and Rubaszek (2023). However, these stud-

ies primarily utilize cross-sectional information derived from a small number of predictors across

3See Kim and Son (2024) and Kim and Ko (2020) for applications of PLS factors in out-of-sample forecasting for
financial market vulnerability variables.

4Ca’ Zorzi and Rubaszek (2023) challenged the recent tendency to increase the number of predictors, as seen
in Cubeddu, Krogstrup, Adler, Rabanal, Dao, and Hannan (2019), demonstrating that a parsimonious forecasting
model can outperform those models.
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a broad panel of currencies, with the Korean won being one of them.5 Furthermore, their work

overlooks critical structural information regarding Korea’s transition to a market based economy

following the 1997-98 Asian Financial Crisis.6 While their studies achieved statistically meaning-

ful panel analyses, incorporating a robust case study with a more extensive dataset could provide

useful insights.

The remainder of the paper is organized as follows. Section 2 provides a detailed explanation

of the methodologies for estimating latent common factors using PC, PLS, and the LASSO, par-

ticularly when predictors follow an integrated process. Section 3 describes the data and presents

preliminary statistical analysis, including an examination of the in-sample fit to identify the sources

of latent common factors. Section 4 introduces the factor-augmented forecasting models and eval-

uates their out-of-sample forecasting performance. This section also discusses the performance of

these data-driven factor models during periods of economic crisis. Finally, Section 5 concludes.

2 Methods of Estimating Latent Common Factors

This section describes how we estimate latent common factors via Principal Component (PC),

Partial Least Squares (PLS), and the Least Absolute Shrinkage and Selection Operator (LASSO),

applied to a large panel of macroeconomic predictors.

2.1 Principal Component Factors

Since the seminal work of Stock and Watson (2002), PC has been widely utilized in the forecasting

literature. This section provides a brief overview of the procedure, addressing cases where predictors

obey either an integrated I(1) or a stationary I(0) process.

Consider a panel of N macroeconomic T×1 time series predictors/variables, x = [x1,x2, ...,xN ],

where xi = [xi,1, xi,2, ..., xi,T ]′ , i = 1, ..., N . We assume that each predictor xi has the following

factor structure. Abstracting from deterministic terms,

xi,t = λ
′
if
PC
t + εi,t, (1)

where ft =
[
fPC1,t , f

PC
2,t , · · · , fPCR,t

]′
is an R×1 vector of latent time-varying common factors at time t

5Engel, Mark, and West (2015) utilized latent factors derived from idiosyncratic deviations of a panel of bilateral
exchange rates from their fundamentals to improve the forecastability. Ca’Zorzi and Rubaszek (2023) employed an
unbalanced panel comprising 30 currencies, including the Korean Won, spanning the period from 1991 to 2018, while
Ca’Zorzi and Rubaszek (2020) analyzed data spanning from 1975 to 2017, focusing on approximately 10 advanced
economies (including the euro area as a single economy) and Korea.

6Korea underwent a rapid structural transformation following the 1997-98 foreign exchange crisis, under IMF
guidance, transitioning to an advanced market economy by around 2000. This shift marked a successful progress
from a developing to an advanced economy. Notably, during this period, there was a shift in the foreign exchange
rate system from a controlled peg to a free float system. Furthermore, significant economic reforms and developments
occurred from 1970s to the1990s, laying the foundation for this transition. Regarding out-of-sample forecasting
exercises, Ca’Zorzi and Rubaszek (2023) relied on a limited number of test sets, ranging from 5 to 9 for each country,
which appears to be insuffi cient for robust evaluation.
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and λi = [λi,1, λi,2, · · · , λi,R]
′
denotes an R× 1 vector of time-invariant idiosyncratic factor loading

coeffi cients for xi. εi,t is the idiosyncratic error term.

Following Bai and Ng (2004), we estimate latent common factors by applying the PC method

to first-differenced data to obtain a consistent estimator of fPCt .7 ,8 Differencing both sides of (1),

we obtain the following.

∆xi,t = λ
′
i∆fPCt + ∆εi,t (2)

for t = 2, · · · , T . We first normalize the data, ∆x̃ = [∆x̃1,∆x̃2, ...,∆x̃N ], then apply PC to ∆x̃∆x̃
′

to obtain the factor estimates ∆f̂PCt along with their associated factor loading coeffi cients λ̂i.9

Estimates of the idiosyncratic component are obtained by taking the residual, ∆ε̂i,t = ∆x̃i,t −
λ̂
′

i∆f̂PCt .10 ,11

2.2 Partial Least Squares Factors

As Boivin and Ng (2006) pointed out, PC factors may not be effective for forecasting a variable

when the predictive information for the target is concentrated in a specific factor that could be

overshadowed by others. Acknowledging this limitation, we complement our factor estimation by

employing PLS for a scalar target variable qt, which has been somewhat overlooked in the current

literature. Unlike PC, the method of PLS generates target specific latent common factors, which is

an attractive feature.

PLS is motivated by the following linear regression model. Abstracting from deterministic

terms,

qt = ∆x
′
tβ + et, (3)

where ∆xt = [∆x1,t,∆x2,t, ...,∆xN,t]
′ is an N × 1 vector of predictor variables at time t = 1, ..., T ,

while β is an N × 1 vector of coeffi cients. et is an error term. Note that the predictors are again

first-differenced as in the previous section.

PLS is especially useful for regression models when N is large. To reduce the dimensionality of

7See also Bai and Ng (2010).
8As shown by Nelson and Plosser (1982), most macroeconomic time series variables are better approximated by

an integrated/nonstationary stochastic process. Note that the PC estimator of ft would be inconsistent if εi,t is an
integrated process.

9This step is necessary, because PC is not scale invariant. That is, we demean and standardize each time series
prior to analysis.
10The level variables are subsequently recovered via cumulative summation, ε̂i,t =

∑t
s=2 ∆ε̂i,s and f̂PCt =∑t

s=2 ∆f̂PCs
11Note that this procedure yields consistent factor estimates even when x includes some stationary I(0) variables.

Alternatively, one may continue differencing each variable until the null of nonstationarity hypothesis is rejected via
a unit root test. However, this approach may be less practical when unit root tests provide contradicting statistical
inferences. See Cheung and Lai (1995) and Behera and Kim (2019) for related discussions. Nonetheless, the factor
estimates obtained from this alternative approach are remarkably similar, largely because most predictors are filtered
through either log-differencing or percent differences.
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the data, rewrite (3) as follows,

qt = ∆x
′
twθ + ut (4)

= ∆fPLS
′

t θ + ut

where ∆fPLSt =
[
∆fPLS1,t ,∆fPLS2,t , ...,∆fPLSR,t

]′
, R < N is an R× 1 vector of PLS factors.

Note that ∆fPLSt is a linear combination of all predictor variables, similar to ridge regression,

that is,

∆fPLSt = w
′
∆xt, (5)

where w = [w1,w2, ...,wR] is an N × R weighting matrix. That is, wr = [w1,r, w2,r, ..., wN,r]
′
,

r = 1, ..., R, is an N × 1 vector of weights on predictor variables for the rth PLS factor, ∆fPLSr,t . θ

is an R× 1 vector of PLS regression coeffi cients, obtained from PLS regression that minimizes the

sum of squared residuals from the equation (4).

It should be noted that we do not utilize θ for our out-of-sample forecasting exercises in the

present paper. To make it comparable to PC factors, we utilize PLS factors ∆fPLSt , then augment

the benchmark forecasting model with estimated PLS factors ∆f̂PLSt .

Among available PLS algorithms, see Andersson (2009) for a brief survey, we use the one

proposed by Helland (1990) that is intuitively appealing. Helland’s algorithm to estimate PLS

factors for a scalar target variable qt is as follows.

First, ∆f̂PLS1,t is pinned down by the linear combinations of the predictors in ∆xt.

∆f̂PLS1,t =
N∑
i=1

wi,1∆xi,t, (6)

where the loading (weight) wi,1 is given by Cov(qt,∆xi,t). Second, we regress qt and ∆xi,t on

∆f̂PLS1,t then get residuals, q̃t and ∆x̃i,t, respectively, to remove the explained component by the

first factor ∆f̂PLS1,t . Next, the second factor estimate ∆f̂PLS2,t is obtained similarly as in (6) with

wi,2 = Cov(q̃t,∆x̃i,t). We repeat until the Rth factor ∆f̂PLSR,t is obtained. Note that this algorithm

generates mutually orthogonal factors.

2.3 Least Absolute Shrinkage and Selection Operator Factors

We employ the Least Absolute Shrinkage and Selection Operator (LASSO), which is often used for

sparse regression. Unlike ridge regression, the LASSO selects a subset (xs) of predictor variables

from x by assigning 0 coeffi cient to the variables that are relatively less important in explaining the

target variable. Putting it differently, we implement the feature selection task using the LASSO.

The LASSO puts a cap on the size of the estimated coeffi cients for the ordinary least squares

(LS) driving the coeffi cient down to zero for some predictors. That is, the LASSO solves the

following constrained minimization problem using L1-norm penalty on β.
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min
β

{
1

T

T∑
t=1

(qt −∆x
′
tβ)2

}
, s.t.

N∑
j=1

|βj | ≤ τ (7)

where ∆xt = [∆x1,t,∆x2,t, ...,∆xN,t]
′ is an N×1 vector of predictor variables at time t = 1, ..., T , β

is an N×1 vector of associated coeffi cients. As the value of tuning (penalty) parameter τ decreases,

the LASSO returns a smaller subset of x, setting more coeffi cients to zero.

Following Kelly and Pruitt (2015), we choose the value of τ to generate a certain number of

predictors by applying the LASSO to ∆x. We then employ the PC and PLS approaches to extract

common factors, ∆f
PC/L
t or ∆f

PLS/L
t , out of the predictor variables that are chosen by the LASSO

regression. The variables selected from the regression were based on the entire period and the

tuning parameter was selected accordingly.

3 In-Sample Analysis

3.1 Data Descriptions

We employ two sets of large panel macroeconomic data from the U.S. and Korea to assess and

compare their predictability for the real dollar/won exchange rate. The U.S. dataset includes

126 macroeconomic time series variables from the FRED-MD database, while the Korean dataset

consists of 192 macroeconomic time series data from the Bank of Korea. Korea maintained a

largely fixed exchange rate regime for the dollar/won exchange rate until around 1980, after which

it switched to a heavily managed floating regime. Following the Asian Financial Crisis in 1997,

Korea began transitions to a market-based exchange rate system.

Our analysis focuses on the free-floating exchange rate regime beginning in the 2000s, after

Korea’s recovery from the Asian Financial Crisis. The dataset spans from October 2000 to August

2023, providing rich monthly observations of macroeconomic predictors relevant to the Korean con-

text.12 We adjusted the nominal exchange rate using the consumer price index (CPI) to obtain

the real exchange rate. Our primary empirical results are based on pre-COVID-19 data (ending in

2019), as the COVID-19 crisis caused significant disconnect between the real exchange rate and its

latent factors. In the subsequent discussion, we explore how out-of-sample predictability evolves

during economic crises, highlighting the temporary yet persistent disconnect from underlying fun-

damentals.

The 126 U.S. predictors are categorized into nine groups: Groups #1 through #4 cover real

activity variables, such as industrial production and labor market indicators, while Groups #5

through #9 include nominal and financial market variables such as interest rates and prices. Sim-

ilarly, the 192 Korean predictors are divided into 13 groups: Groups #1 through #6 include real

activity variables, such as inventories and industrial production, while Groups #7 through #13

12The sample period begins in October 2000, matching the availability of key Korean interest rate data, such as
the 10-year Government Bond yield and the BBB- Corporate Bond yield, which commenced in October 2000. Also,
18 housing price variables became available starting in August 2000.
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cover nominal and financial market variables. Detailed information on these categorizations is

provided in Table 1. All variables, except those expressed as percentages (e.g., interest rates and

unemployment rates), were log-transformed before estimation.

Table 1 around here

3.2 Unit Root Tests

We first implement some specification tests for our analysis. Table 2 presents the augmented

Dickey Fuller (ADF) test results for the log real exchange rate (qt = st + pUSt − pKRt ) and the

log nominal exchange rate (st). The ADF test rejects the null of nonstationarity for qt at the

5% significance level, while it fails to reject the null hypothesis for st at any conventional level.

Note that these results are consistent with (4) and (7) as well as standard monetary models in

international macroeconomics.13

Next, we implement a panel unit root test for predictors in the US (xUSt ) and in Korea (xKRt ) via

the Panel Analysis of Nonstationarity in Idiosyncratic and Common components (PANIC) analysis

by Bai and Ng (2004, 2010). The PANIC procedure estimates common factors (fPCr,t , r = 1, 2, .., R)

utilizing PC as explained in the previous section, then it tests the null of nonstationarity for common

factors via the ADF test with an intercept. It also implements a panel unit root test for de-factored

idiosyncratic components of the data by the following statistic.

Pê =
−2
∑N
i=1 ln pvêi − 2N

2N1/2
,

where pvêi denotes the p-value of the ADF statistic with no deterministic terms for de-factored

∆xi,t.14

Note that we also test the null hypothesis for the common factors of subsets of xt, that is, real

and financial sector variables separately. This is because we are interested in the out-of-sample

predictability of the common factors from these subsets of the data. In what follows, we show

U.S. real activity factors (fPC,Rr,t ) include more long-run predictive contents, while its financial

market factors (fPC,Fr,t ) yield superior predictability in the short-run, which is consistent with the

implications of Boivin and Ng (2006).

The PANIC test fails to reject the null of nonstationarity for all common factor estimates at the

5% significance level with an exception of the second financial factor in the US. Its panel unit root

test rejects the null hypothesis that states all variables are I(1) processes for all cases.15 However,

nonstationary common factors eventually dominate stationary dynamics of de-factored idiosyncratic
13For instance, that purchasing power parity (PPP) is consistent with stationary qt and nonstationary st, because

PPP implies a cointegrating relationship [1, 1] between st and the relative price (relpt = pUSt − pKRt ) for the real
exchange rate qt in the long-run.
14Pê statistic has an asymptotic standard normal distribution. The panel test utilizes the p-value of the ADF

statistics with no deterministic terms, because defactored variables are mean-zero residuals.
15The alternative hypothesis is that there is at least one stationary variable.
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components.16 Hence, test results in Table 2 provide strong evidence in favor of nonstationarity in

the predictor variables xt, which is consistent with Nelson and Plosser (1982).

Table 2 around here

3.3 Factor Model In-Sample Analysis

This section reports the in-sample properties of the latent factors estimated using the full sample

data.

3.3.1 In-Sample Fit Analysis

In Figure 1, we present cumulative R2 statistics of the latent factors for the dollar/won real exchange

rate. The three figures in the top panel show the cumulative R2 statistics of PC (solid lines) and

PLS factors (dashed lines), obtained from all predictors, real activity predictors, and financial sector

predictors in the US. The bottom row figures display the cumulative R2 statistics of Korean factors

obtained in a similar manner. Some interesting findings are as follows.

First, the PLS factors provide a notably better in-sample fit in comparison with the performance

of PC factors. This is because PLS utilizes the covariance information between the target and the

predictor variables, while PC factors are extracted solely from the predictor variables. It is also

interesting to see that the cumulative R2 statistics of PLS factors overall exhibit a positive slope

at a decreasing rate as the number of factors increases, whereas additional contributions of PC

factors show no such patterns. This is primarily due to the fact that our PLS algorithm sequentially

estimates orthogonalized common factors after removing explanatory power of previously estimated

factors. The PC method extracts common factors independent of the target variable, hence the

additional contribution of PC factors does not necessarily decrease.

Second, U.S. factors greatly outperform Korean factors in terms of in-sample fit. The cumulative

R2 values of U.S. PLS factors reach well above 60%, while Korean PLS factors cumulatively explain

less than 40% of variations in the real exchange rate. Note that Korean PC factors yield virtually no

explanatory power, close to zero. These findings imply that Korean macroeconomic variables may

not be an important driver of the dollar/won real exchange rate dynamics, while U.S. predictors

contain substantial predictive contents for it. Also, we note that the contribution of PLS Korean

factors mostly stem from that of PLS Korean financial sector factors. PLS real Korean factors

explain less than 10% of variations jointly even when 12 factors are utilized.

Figure 1 around here

16See Kim and Kim (2018) for a simulation study that shows the dominance of stationary components over non-
stationary components in small samples.
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3.3.2 Cross-Section Correlations of the Dollar/Won Rate with Other Exchange Rates

We investigate the source of this asymmetric explanatory power by examining the co-movement

behavior between bilateral exchange rates relative to the US dollar. We conjecture that U.S. factors

are the dominant drivers of exchange rates vis-à-vis the U.S. dollar, rather than the idiosyncratic

factors of small open economies like Korea. For this purpose, we implement a formal test by

Pesaran (2021) for cross-section dependence in 36 bilateral real exchange rates against the U.S.

dollar, including 16 euro-zone countries, using the following test statistics.17

CD =

√
2T

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ρ̂i,j

 d−→ N(0, 1)

where ρ̂i,j is the pair-wise correlation coeffi cients from the residuals of the ADF regressions for each

real exchange rate.18

The CD statistic was 176.748 (pv = 0.000), indicating strong empirical evidence of cross-section

dependence at any conventional significance level. The heat map in Figure 2 clearly demonstrates

these strong cross-correlations in the real exchange rates relative to the U.S. dollar. With some

exceptions, such as China, which often employs a managed float, most real exchange rates exhibit

highly correlated contemporaneous relations. The average ρ̂i,Korea was 0.446, while the average ρ̂i,j
of all countries was 0.481.

We obtained similar results even when excluding all euro-zone countries. The CD statistic was

59.019 (pv = 0.000) and the average ρ̂i,j was 0.293. Such strong cross-correlations of many bilateral

real exchange rates imply a dominant role of the reference country, that is, the U.S., in determining

the dynamics of these bilateral exchange rates.

Figure 2 around here

3.3.3 Marginal R2 Analysis

Next, we investigate the source of these common factor estimates via the marginal R2 analysis,

following the approach suggested by Ludvigson and Ng (2009). For this purpose, we regress each

predictor onto the common factor and record what proportion of the variation can be explained by

the common factor. Results are reported in Figures 3 to 5 for the first common factor from the all

predictors, real activity variables, and nominal/financial market variables, respectively.

17We obtained all nominal exchange rates and CPIs from the IFS for the sample period from September 2000 to
December 2019. 16 eurozone countries that are included are Austria, Belgium, Finland, France, Germany, Greece,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Portugal, Slovakia, Slovenia, and Spain. We were able
to retrieve 20 non-eurozone countries including Brazil, Canada, Chile, China, Colombia, Czech Republic, Denmark,
Hungary, India, Indonesia, Israel, Japan, Korea, Mexico, Poland, Russia, Singapore, Switzerland, Sweden, and the
UK. We obtained the Singapore CPI from the Department of Statistics of Singapore.
18We implemented the ADF regression for each real exchange rate relative to the U.S. dollar via the general-to-

specific rule with maximum 6 lags, then calculated pair-wise correlation coeffi cients using the ADF regression residuals
of 35 real exchange rates.
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As shown in Figure 3, the marginal R2 statistics of the first U.S. PC factor (solid lines) are very

similar to those of the first U.S. PLS factor (bar graphs). In contrast, the marginal R2 statistics of

the first Korean PC factor differ significantly from those of the first Korean PLS factor. Specifically,

the marginal R2 statistics of the Korean PLS factor are negligibly low compared with those of the

PC factor.

Since PC factors are obtained solely from the predictors without reference to the target variable,

the marginal R2 values of the PC factor are expected to be high. However, because PLS factors

are estimated using the covariance between the target variable and the predictors, the low R2

statistics of the Korean PLS factor imply that Korean predictors are largely disconnected from the

dollar/won real exchange rate.

Note also that PLS U.S. factors are more closely connected with Groups #1 (industrial pro-

duction) and #2 (labor market) than with other groups. Putting it differently, the first PLS U.S.

factor appears to be strongly driven by these real activity variables rather than by financial market

variables or other real activity variables. We also point out that these two groups include key vari-

ables that influence the Fed’s decision making process regarding the U.S. monetary policy stance

under its dual mandate, which in turn affects the dollar exchange rate.

Figure 3 around here

We investigate the source of the common factors at a more disaggregated level, examining the

marginal R2 statistics of the real and financial market factors. Figure 4 reports the marginal R2

statistics of the first U.S. real activity factor. Again, the PLS and PC factors explain the variations

in real activity variables similarly well. We also note that the U.S. real activity factor is mainly

driven by industrial production (Group #1) and labor market (Group #2) variables. However,

the PLS Korean real activity factor explains negligible variations in Korean real activity variables,

while the first PC factor exhibits reasonably high R2 statistics. This again confirms our previous

findings. Similar results were observed from the marginal R2 analysis for the first financial market

PLS and PC factors in Figure 5. The U.S. PLS and PC nominal/financial market factors seem to

be driven mostly by CPIs and PPIs in the US.

Figures 4 and 5 around here

4 Out-of-Sample Prediction Performance

4.1 Factor-Augmented Forecasting Models

This section reports our out-of-sample forecast exercise results using factor-augmented forecasting

models for the dollar/won real exchange rate. Based on the ADF test results in Table 2, we employ
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the following stationary AR(1)-type stochastic process for the real exchange rate qt. Abstracting

from an intercept,

qt+j = αjqt + ut+j , j = 1, 2, .., k, (8)

where αj is less than one in absolute value for stationarity. Note that we regress the j-period ahead

target variable (qt+j) directly on the current period target variable (qt) instead of using a recursive

forecasting approach with an AR(1) model, qt+1 = αqt + εt+1, which implies αj = αj under that

approach. With this specification, the j-period ahead forecast is,

q̂ARt+j|t = α̂jqt, (9)

where α̂j is the least squares (LS) estimate of αj in (8).

We augment (8) by adding factor estimates. That is, our factor augmented stationary AR(1)-

type forecasting model is the following.

qt+j = αjqt + β
′
j∆f̂ t + ut+j , j = 1, 2, .., k (10)

We again employ a direct forecasting approach by regressing qt+j directly on qt and the estimated

factors (∆f̂t). Note that (10) coincides with an exact AR(1) process when j = 1, but extended by

the factor covariates ∆f̂t. Note also that (10) nests the stationary benchmark model (8) when ∆f̂ t

does not contain any useful predictive contents for qt+j , that is, βj = 0. (10) yields the following

j-period ahead forecast,

q̂FARt+j|t = α̂jqt + β̂
′

j∆f̂t, (11)

where α̂j and β̂j are the LS coeffi cient estimates from (10).

We evaluate the out-of-sample predictability of our factor-augmented forecasting model q̂FARt+j|t
using a recursive window scheme.19 We employ the AR benchmark forecast q̂ARt+j|t in (9) in addition

to the no-change Random Walk (RW) benchmark q̂RWt+j|t = qt. The evaluation criterion is the ratio

of the root mean square prediction error (RRMSPE),

RRMSPE(j) =

√
1

T−T0−j
∑T
t=T0+j

(
εFARt+j|t

)2
√

1
T−T0−j

∑T
t=T0+j

(
εBMt+j|t

)2 , (12)

where

εBMt+j|t = qt+j − q̂BMt+j|t, ε
F
t+j|t = qt+j − q̂FARt+j|t, BM = AR,RW (13)

19We use initial T0 < T observations, {qt,∆xi,t}T0t=1, i = 1, 2, ..., N to estimate the first set of factors
{

∆f̂t
}T0
t=1

using

one of our data dimensionality reduction methods. We formulate the first forecast q̂FART0+j|T0 by (11), then calculate and

keep the forecast error (εFART0+j|T0). Next, we add one observation (t = T0 + 1) for the second round forecasting, then

re-estimate
{

∆f̂t
}T0+1
t=1

using {qt,∆xi,t}T0+1t=1 , i = 1, 2, ..., N to formulate the second round forecast, q̂FART0+j+1|T0+1, and

its resulting forecast error εFART0+j+1|T0+1. We repeat this process until we forecast the last observation, qT .
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Note that RRMSPE(j) < 1 indicates that our factor models outperform the benchmark models.20

4.2 Evaluation of Factor-Augmented Models

We implement out-of-sample forecast exercises using a fixed-size (50% split point, that is, T0 = T/2)

recursive window method with up to 3 (k) latent factor estimates.21 Latent common factors are

acquired via the PLS, PC, and LASSO methods for large panels of macroeconomic data of the U.S.

and Korea.

Table 3 reports the RRMSPE statistics of our forecasting model q̂FARt+j|t relative to q̂
RW
t+j|t. Recall

that our models outperform the RW benchmark when the RRMSPE is less than one. We also

obtained the RRMSPE statistics of q̂FARt+j|t relative to q̂
AR
t+j|t (not reported to save space). The

superscript ∗ denotes cases where q̂FARt+j|t outperforms q̂
AR
t+j|t. Since the AR benchmark consistently

outperformed the RW model across all cases, the superscript ∗ indicates that q̂FARt+j|t outperforms

both benchmarks: q̂RWt+j|t and q̂
AR
t+j|t. Our major findings are as follows.

First, the U.S. predictors demonstrate superior predictive power for the dollar/won real ex-

change rate, while the Korean factor models perform relatively poorly compared to their U.S.

counterparts. More specifically, our factor models consistently outperform both the RW and AR

models only when the U.S. factors are utilized. In contrast, models incorporating Korean factors

are generally outperformed by the AR model, though they still outperform the RW model when

the forecast horizon extends to one year or longer. These empirical findings are consistent with

our in-sample fit analysis presented in the previous section. Interestingly, the performance of our

factor models tends to deteriorate when U.S. factors are combined with Korean factors, implying

that the inclusion of Korean factors may add noise in predicting the dollar/won real exchange rate.

Second, our U.S. factor models tend to perform better at shorter horizons when nominal/financial

market factors are included, while real activity factors enhance predictability at longer horizons.

Specifically, the strong predictive performance of models with the total factors, ∆f̂PLSt or ∆f̂PCt ,

at the 1-period horizon seem to inherit the superior performance of models with financial market

factors, ∆f̂PLS,Ft or ∆f̂PC,Ft . In contrast, superior longer horizon predictability is primarily driven

by the contributions of real activity factors, ∆f̂PLS,Rt or ∆f̂PC,Rt . These findings imply that factors

obtained from specific subsets of predictors can provide more useful information than those derived

from the full set of variables, consistent with the insights of Boivin and Ng (2006).

Table 3 around here

We also employ the LASSO approach to identify subsets of predictors that are most relevant for

explaining the target variable. The idea behind that is to estimate factors using fewer, but more

informative predictors, as discussed by Bai and Ng (2008). Following Kelly and Pruitt (2015), we

20Alternatively, one may employ the ratio of the root mean absolute prediction error (RRMAPE). Results are
overall qualitatively similar.
21We obtained qualitatively similar results with a 70% sample split point.
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adjusted the tuning parameter τ in (7) to choose 30 predictors from each panel of macroeconomic

variables in the U.S. and Korea, while 20 predictors were selected from each of the real activity and

the financial market variable groups. Using these subsets, we employed PLS and PC to estimate

up to three common factors, which were then used to augment the benchmark AR model. The

results, consistent with those in Table 3, are presented in Table A1 in the Appendix.

4.3 Diebold-Mariano-West Test Results

We extend our previous analyses by conducting the Diebold-Mariano-West (DMW ) test, by Diebold

and Mariano (1995) and West (1996), to directly assess the statistical significance of the U.S. fac-

tor models relative to the Korean factor models. For this purpose, we define the following loss

differential function,

dt = (εFKoreat+j|t )2 − (εFU.S.t+j|t )
2, (14)

where

εFKoreat+j|t = qt+j − q̂FKoreat+j|t , εFU.S.t+j|t = qt+j − q̂FU.S.t+j|t

The DMW test statistic is defined as follows to test the null hypothesis of equal predictive

accuracy, that is, H0 : Edt = 0,

DMW (j) =
d̄√

Âvar(d̄)

, (15)

where d̄ is the sample average, d̄ = 1
T−T0−j

∑T
t=T0+j

dt, and the long-run variance of d̄ is Âvar(d̄) =
1

T−T0
∑q
i=−q k(i, q)Γ̂i.22

The DMW test statistics in (15) obeys the standard normal distribution under the null hy-

pothesis. The results, presented in Table 4, show that RRMSPE values are below one in all

18 cases, consistent with the findings in Table 3. That is, U.S. factors yield superior predictive

content compared to Korean factors. The overall DMW test results reject the null hypothesis of

equal predictability in 11 out of 18 cases at the 10% significance level. Notably, for all one-year

ahead forecasts, the U.S. factor models significantly outperform the Korean factor models at the

5% significance level.23

Table 4 around here

We also conducted the DMW test on our factor models, comparing them to the benchmark

RW and AR models. Since the benchmark models are nested within our factor models, asymptotic

22T0 is the number of initial observations that are used to formulate the first out-of-sample forecast. Following
Andrews and Monahan (1992), we use the quadratic spectral kernel (k(·)) with automatic bandwidth (q) selection
for our analysis. And Γ̂i is the ith autocovariance function estimate.
23Results from alternative specifications corroborate the findings presented in Table 3. U.S. factor models consis-

tently outperform Korean factor models when total or real activity factors are employed. However, results become
mixed when financial factors are used.
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critical values are not suitable. To address this, we employed the approach of McCracken (2007),

which adjusts the test statistics by re-centering them to account for nuisance parameters. Consistent

with the findings in Table 3, the results favor again favor the U.S. factor augmented models.24

4.4 Deviations from Fundamentals after Crises

Our primary findings were based on pre-COVID-19 era data, excluding the significant outlier effects

associated with the COVID-19 crisis. In this section, we examine how economic crises influence the

predictive power of macroeconomic variables, highlighting a temporary yet persistent disconnect

between the real exchange rate and the underlying fundamentals captured by latent factors.

Figure 6 displays the RRMSPE statistics using the recursive window scheme, with a specific

focus on two significant economic crises: the Subprime Mortgage Crisis (2007-2008) in the top panel

and the COVID-19 Pandemic Crisis (2020) in the bottom panel.

It should be noted that we observe a rapid rise in the RRMSPE statistic for one-year ahead

forecasts following the onset of the COVID-19 pandemic. Such increases eventually lead to the

loss of superior predictability of U.S. factor models when compared to both the benchmark RW

model and Korean factor models. Although our factor-augmented forecasting models exhibit overall

weak performance for one-month ahead forecasts, a similar reduction in predictability is evident.

Korean factor models experience a gradual loss of predictability, ultimately being surpassed by the

benchmark model, mirroring the trend observed in U.S. factor models. Putting it differently, we

report a deviation from the fundamentals following the onset of the pandemic.

Likewise, we identify a similar pattern during a preceding crisis in the top panel, although

caution is necessary when analyzing the RRMSPE statistics during the Great Recession era due

to the limited training sample period.25 The RRMSPE statistics of all factor models show a

gradual increase (loss of predictability) following the onset of the subprime mortgage market crisis,

irrespective of whether U.S. or Korean factors were employed.

Figure 6 around here

It should be also noted that the U.S. PLS-AR and PC-AR models exhibit sudden drops in

1-year ahead predictability (increases in RRMSPE values) around March 2021. This is attributed

to the models utilizing data up to March 2020, a period when U.S. activity nearly halted due to

the pandemic, for forecasting March 2021. Similarly, another abrupt decline is observed around

April 2020 for 1-month ahead predictability. These sudden changes in U.S. macroeconomic activity,

highlighted in Figure 7, stand in contrast to Korean macroeconomic data that exhibit a gradual

decline in real activity.
24Detailed results are available upon request.
25Our sample begins in October 2000. Therefore, in the initial out-of-sample (OOS) analysis in 2006, we base our

assessment on approximately a 3-year period for both the training and the test sets. Notably, RRMSPE statistics
demonstrate gradual improvement, indicating the incremental addition of predictability from macro factors until the
onset of the crisis around 2007, leading to a subsequent decline in predictability.
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For instance, U.S. Industrial Production declined from 101.6 in February to 84.6 in April,

while the unemployment rate rose from 3.5% to 14.8% during the same period. U.S. latent factor

estimates also show similar abrupt declines, suggesting that these movements describe overall U.S.

activity. In contrast, Korean data showed much more gradual declines followed by a slow recovery.

Ultimately, macroeconomic factors lose predictability after the pandemic crisis, with an expectation

of recovery based on the earlier episode of a rebound after the Great Recession.

Despite the limitation imposed by the short sample period, these findings appear to represent

a temporary departure from the fundamentals, which one would expect to recover slowly, as ob-

served after the Great Recession until the COVID-19 pandemic. In this current study, hence, we

have chosen to concentrate on forecasting exercises during the tranquil period using pre-COVID

observations.26

Figure 7 around here

5 Concluding Remarks

In this paper, we propose parsimonious factor-augmented forecasting models for the real exchange

rate within a data-rich environment. We leverage various data dimensionality reduction techniques

on extensive panels of macroeconomic time series data, consisting of 125 American and 192 Korean

monthly frequency variables. Unlike other research that utilizes cross-section information from

many exchange rates, our approach utilizes many country-level macroeconomic variables in the

U.S. and Korea for the dollar/won real exchange rate.

Our proposed forecasting models consistently demonstrate superior performance compared to

both the random walk (RW) and autoregressive (AR) benchmark models, but this is only achieved

when utilizing latent common factors derived from the U.S. predictors. Specifically, models in-

corporating U.S. real activity factors exhibit strong performance at longer horizons, while U.S.

nominal/financial market factors enhance prediction accuracy at shorter horizons. These findings

align with the research of Boivin and Ng (2006), who emphasized the importance of identifying

relevant common factors for the target variable. In contrast, models incorporating Korean factors

generally underperform compared to the AR model, although they still outperform the RW model

for forecast horizons of 1 year or longer. We interpret this phenomenon as being related to the

high cross-correlations of dollar exchange rates, which result in a weak influence from idiosyncratic

small open economies.

We report temporary yet persistent disconnects between the real exchange rate and its under-

lying fundamentals during economic turmoils such as the COVID-19 Pandemic Crisis. We suspect

such deviations might occur in the presence of elevated uncertainty. What triggered such anomalies

26A thorough examination of this topic can be addressed in a separate project, incorporating other exchange rates
with longer sample periods.
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and how persistent the deviations last are intriguing questions that can be investigated utilizing

long-horizon data that allows suffi ciently many events to be used in order to answer these questions.

In a nation where economic prosperity heavily relies on exports and imports, the significance of

effectively monitoring and forecasting real exchange dynamics cannot be overstated. This manu-

script provides insights into the practical and effi cient utilization of extensive data, offering valuable

guidance not only for entrepreneurs but also for policy-makers.
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Table 1. Macroeconomic Data Descriptions

U.S. Macroeconomic Data

Group ID Data ID Data Description

#1 1-16 Industrial Production Indices

#2 17-47 Labor Market Variables

#3 48-57 Housing Inventories

#4 58-65 Manufacturers’ Consumption/ New Orders

#5 66-79 Monetary Aggregates

#6 80-96 Domestic Interest Rates

#7 97-116 Producer/Consumer Prices

#8 117-121 Stock Indices

#9 122-126 Exchange Rates

Korean Macroeconomic Data

Group ID Data ID Data Description

#1 1-27 New Orders

#2 28-34 Inventory

#3 35-52 Housing

#4 53-74 Retails/Manufacturing

#5 75-87 Labor

#6 88-98 Industrial Production

#7 99-102 Business Condition

#8 103-114 Stock Indices

#9 115-127 Interest Rates

#10 128-145 Exports/Imports Prices

#11 146-163 Prices

#12 164-180 Money

#13 181-192 Exchange Rates

Note: Macroeconomic data for the U.S. and Korea were obtained from FRED-MD and the Bank of

Korea, respectively.
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Table 2. Unit Root Test Results

ADF Test

 −2966†
(0038)

 −1953
(0308)

PANIC Test

x x


1 −2519
(0100)

1 1186
(0998)

2 −1270
(0641)

2 −2085
(0237)

̂ 11341‡
(0000)

̂ 16667‡
(0000)



1 −2443

(0124)


1 −0634

(0868)



2 −2393

(0133)


2 −2057

(0254)

̂ 5763‡
(0000)

̂ 15552‡
(0000)



1 −1888

(0326)


1 1250

(0999)



2 −3437‡

(0009)


2 −1544

(0512)

̂ 6425‡
(0000)

̂ 8711‡
(0000)

Note:  and  are the CPI-based real and nominal bilateral dollar/won exchange rates, respectively.

PLS estimates target specific factors for  and  separately, while PC yields common factors independent

of the target variable. Real variables are from Groups #1 through #4 for U.S. factors and Groups #1

through #7 for Korean factors, while financial variables include Groups #5 through #9 for U.S. factors

and Groups #8 through #13 for Korean factors. The augmented Dickey-Fuller (ADF) test reports the

ADF t-statistics when an intercept is included, with P -values in parentheses. For the PANIC test results,

we report the ADF t-statistics with an intercept for each common factor estimate. ̂ denotes the panel

test statistics from the de-factored idiosyncratic components. ‡ and † denote a rejection of the null
hypothesis at the 1% and 5% level, respectively.
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Table 3. j-Period Ahead Out-of-Sample Predictability for the Real Exchange Rate

U.S. Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 1 0.9886∗ 0.9924 0.9927 0.9755∗ 0.9913∗ 0.9858∗

2 0.9657∗ 1.0029 0.9806∗ 0.9854∗ 0.9977 0.9847∗

3 0.9741∗ 1.0059 0.9782∗ 0.9860∗ 1.0331 0.9782∗

12 1 0.7440∗ 0.7347∗ 0.8001∗ 0.7579∗ 0.7477∗ 0.8078

2 0.7469∗ 0.7424∗ 0.9120 0.7954∗ 0.7477∗ 0.8096

3 0.8051∗ 0.8166 0.9763 0.7954∗ 0.7514∗ 0.8915

36 1 0.7008∗ 0.6913∗ 0.7868 0.7277∗ 0.7007∗ 0.8059

2 0.7852 0.7169∗ 0.8120 0.7609 0.7153∗ 0.7946

3 0.8175 0.7028∗ 0.7865 0.7561 0.7204∗ 0.8130

Korean Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 1 1.1104 0.9971 1.0659 1.4628 1.1844 1.0367

2 1.5800 1.0592 1.0582 2.0280 1.1569 3.4831

3 2.0492 1.1154 1.8815 4.2589 1.2789 5.8582

12 1 0.7932∗ 0.8222 0.7875∗ 0.8077 0.8050∗ 0.8282

2 0.8044∗ 0.8595 0.8089 0.8287 0.8043∗ 0.8420

3 0.8078 0.9329 0.8138 0.8224 0.8131 0.8010∗

36 1 0.7280∗ 0.7253∗ 0.7203∗ 0.7272∗ 0.7325 0.7248∗

2 0.7409 0.7793 0.7220∗ 0.7224∗ 0.7449 0.7242∗

3 0.8392 0.9045 0.7476 0.7222∗ 0.7443 0.7306

American and Korean Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 2 1.0561 0.9919∗ 1.0480 1.2133 1.1204 1.0224

4 1.0592 1.0617 1.1364 2.4814 1.1236 4.1667

6 1.7844 1.1455 1.7382 4.4843 1.2539 5.3447

12 2 0.7406∗ 0.7574∗ 0.7872∗ 0.7660∗ 0.7490∗ 0.8475

4 0.7660∗ 0.8033∗ 0.9480 0.8422 0.7495∗ 0.8508

6 0.8790 0.9184 1.0909 0.8605 0.7532∗ 0.8790

36 2 0.7004∗ 0.6880∗ 0.7763 0.7323 0.7047∗ 0.8186

4 0.8045 0.7486 0.8130 0.7785 0.7244∗ 0.8096

6 0.9077 0.8365 0.8166 0.7854 0.7365 0.8116

Note: We report the RRMSPE statistics employing a recursive window scheme with a 50% sample split

point. RRMSPE denotes the ratio of the mean squared prediction error (RMSPE ) from the benchmark

random walk (RW) model to the RMSPE from each competing model with k factors. Superscript R and

F mean that factors were estimated from real and financial variables, respectively. RRMSPE statistics

that are less than 1 indicate that the competing model outperforms the benchmark RW model. ∗ denotes
cases where the competing model outperforms both the benchmark AR model and the RW model.
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Table 4. Diebold-Mariano-West Test: U.S. vs. Korean Real Factor Models

PLS Factors PC Factors

 #Factors    

1 1 0.9952 0.200 0.8370 1.125

2 0.9468 0.762 0.8624 2.012†

3 0.9018 1.266 0.8078 2.270†

12 1 0.8935 3.370‡ 0.9287 2.348‡

2 0.8638 3.261‡ 0.9295 2.591‡

3 0.8753 2.184† 0.9242 2.573‡

36 1 0.9530 1.479∗ 0.9566 1.057

2 0.9200 1.383∗ 0.9603 0.858

3 0.7770 3.842‡ 0.9678 0.702

Note: We report the RRMSPE statistics comparing the predictability of the U.S. real factor model to

the Korean real factor model. RRMSPE values that are less than 1 indicate that the U.S. factor model

outperforms the Korean factor model. DMW denotes the Diebold-Mariano-West statistics, which are

asymptotically normally distributed under the null hypothesis of equal predictability. ‡, †, and * denote
a rejection of the null hypothesis at the 1%, 5%, and 10% level, respectively.
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Figure 1. Cumulative R2Analysis

Note: We regress the real exchange rate on each factor, up to 12, and then cumulatively obtain the 2

statistics. Dotted lines represent PLS factors, while solid lines are for PC factors.
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Figure 2. Cross-Section Dependence across Dollar Real Exchange Rates

Note: The heat map on the left shows the cross-correlations of the ADF regression residuals for 36 real

exchange rates relative to the U.S. dollar. The figure on the right reports the average cross-correlations

for each real exchange rate in the figure on the right. The country ID is in the same order as in the heat

map on the left. Korea’s ID 13.
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Figure 3. Marginal R2Analysis: Total Factors

U.S. Factor #1

Korean Factor #1

Note: We report the 2 statistics that were obtained by regressing each predictor on the first common

factor estimate. The horizontal axis represent the predictor IDs. Solid indicate the PC factor, while bar

graphs represent the PLS factor.
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Figure 4. Marginal R2Analysis: Real Activity Factors

U.S. Real Factor #1

Korean Real Factor #1

Note: We report the 2 statistics obtained by regressing each predictor on the first common factor

estimate. The horizontal axis represents the predictor IDs. Solid lines indicate the PC factor, while bar

graphs represent the PLS factor.
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Figure 5. Marginal R2Analysis: Nominal/Financial Factors

U.S. Financial Factor #1

Korean Financial Factor #1

Note: We report the 2 statistics obtained by regressing each predictor on the first common factor

estimate. The horizontal axis represents the predictor IDs. Solid lines indicate the PC factor, while bar

graphs represent the PLS factor.
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Figure 6. Recursive Window RRMSPE Estimations near the Economic Crises

Note: The RRMSPE statistics, calculated using the recursive window scheme, are reported in proximity

to two significant economic crises: the Subprime Mortgage Crisis in the top panel and the COVID-19

Pandemic Crisis in the bottom panel. The estimation was conducted using total factor models.
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Figure 7. COVID-19 Pandemic Macroeconomic Variables

Note: The top panel presents two key macroeconomic activity variables for each country, namely indus-

trial production and the unemployment rate, during the COVID-19 Pandemic Crisis. The bottom panel

displays the latent total factor estimates.
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Appendix

Table A1. j-Period Ahead Out-of-Sample Predictability with LASSO

U.S. Factors

 #Factors ∆f

 ∆f


 ∆f


 ∆f


 ∆f


 ∆f




1 1 0.9841∗ 0.9787∗ 0.9815∗ 0.9623∗ 0.9819∗ 0.9681∗

2 0.9626∗ 1.0153 0.9746∗ 0.9568∗ 0.9843 0.9506∗

3 0.9627∗ 1.0197 0.9635∗ 0.9598∗ 0.9730∗ 0.9547∗

12 1 0.8234 0.7251∗ 0.8610 0.7990∗ 0.7488∗ 0.8056

2 0.8526 0.7432∗ 0.9035 0.8127 0.7381∗ 0.8516

3 0.8522 0.7465∗ 0.8811 0.9330 0.7657∗ 0.8864

36 1 0.7710 0.6575∗ 0.7841 0.7377 0.6780∗ 0.7399

2 0.7539 0.6734∗ 0.7290 0.7788 0.6824∗ 0.7498

3 0.7896 0.6789∗ 0.7355 0.7675 0.6749∗ 0.7454

Korean Factors

 #Factors ∆f

 ∆f


 ∆f


 ∆f


 ∆f


 ∆f




1 1 1.0272 0.9978 1.0232 1.8440 1.0264 1.7182

2 2.1758 1.0072 1.5969 1.8208 1.0367 2.8885

3 1.7562 1.0246 1.5743 3.1918 1.0382 3.5311

12 1 0.8149 0.8235 0.8197 0.8672 0.8042∗ 0.8642

2 0.8497 0.8165 0.8607 0.8579 0.8053∗ 0.8625

3 0.8466 0.8228 0.8613 0.8532 0.8147 0.8621

36 1 0.7317 0.7730 0.7284 0.7184∗ 0.7324 0.7184∗

2 0.7340 0.7651 0.7255∗ 0.7176∗ 0.7327 0.7184∗

3 0.7250∗ 0.7814 0.7726 0.7113∗ 0.7510 0.7602

American and Korean Factors

 #Factors ∆f

 ∆f


 ∆f


 ∆f


 ∆f


 ∆f




1 2 1.0046 0.9834∗ 1.0148 1.7001 1.0082 1.5726

4 1.8464 1.0332 1.4043 1.6340 1.0314 2.3348

6 1.6041 1.0493 1.4999 2.5006 1.0315 3.2051

12 2 0.8114 0.7525∗ 0.8510 0.8498 0.7520∗ 0.8484

4 0.9107 0.7618∗ 0.9681 0.8782 0.7417∗ 0.9129

6 0.9144 0.7846∗ 0.9792 0.9717 0.7825∗ 0.9264

36 2 0.7896 0.6826∗ 0.8024 0.7469 0.6887∗ 0.7403

4 0.7814 0.6936∗ 0.7417 0.7806 0.6965∗ 0.7515

6 0.8241 0.7169∗ 0.8106 0.7943 0.7059∗ 0.7662

Note: We report the RRMSPE statistics employing a recursive window scheme with a 50% sample split

point. RRMSPE denotes the ratio of the mean squared prediction error (RMSPE ) from the benchmark

random walk (RW) model to the RMSPE from each competing model with k factors. Superscript R and

F indicate that factors were estimated from real and financial variables, respectively. RRMSPE statistics

less than 1 indicate that the competing model outperforms the benchmark RW model. ∗ denotes cases
where the competing model outperforms both the benchmark AR model and the RW model.
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