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Abstract

This paper examines the asymmetric out-of-sample predictability of macroeconomic vari-

ables for the real exchange rate between the United States and Korea. While conventional

models suggest that the bilateral real exchange rate is driven by the relative economic per-

formance of the two countries, our research demonstrates the superior predictive power of our

factor-augmented forecasting models only when factors are obtained from U.S. economic vari-

ables, whereas the inclusion of Korean factors fails to enhance predictability and behaves more

like noise variables. Our models exhibit particularly strong performance at longer horizons

when incorporating American real activity factors, while American nominal/financial market

factors contribute to improved short-term prediction accuracy. We attribute the remarkable

predictability of American factors to the significant cross-correlations observed among bilateral

real exchange rates vis-à-vis the U.S. dollar, which suggests a limited influence of idiosyncratic

factors specific to small countries. Moreover, we assess our factor-augmented forecasting mod-

els by incorporating proposition-based factors instead of macro factors. While macro factors

generally exhibit superior performance, it is worth noting that the uncovered interest parity

(UIP)-based global factors, with the dollar as the numéraire, consistently demonstrate strong

overall performance. On the other hand, the purchasing power parity (PPP) and real uncovered

interest parity (RIRP) factors have a limited role in forecasting the dollar/won real exchange

rate.
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1 Introduction

This paper investigates the asymmetric out-of-sample forecastability of macroeconomic predictors

for the real exchange rate between the United States and Korea. Conventional real exchange

rate models suggest that the bilateral real exchange rate is influenced by the relative economic

performance of the two countries. However, our research demonstrates the superior predictive

performance of latent factors obtained from a large panel of U.S. macroeconomic time series data,

while Korean macroeconomic factors have a limited role, akin to noise variables, in forecasting the

dollar/won real exchange rate. We interpret this remarkable predictability of American factors as

a consequence of the significant cross-correlations observed between bilateral real exchange rates

vis-à-vis the U.S. dollar. We further show that our factor forecasting models outperform commonly

used benchmark models as well as theoretical proposition-based prediction models.

There is a substantial body of forecasting literature that extensively questions the effectiveness

of exchange rate models in terms of their ability to predict exchange rates in out-of-sample scenarios.

In their seminal work, Meese and Rogoff (1983) demonstrate that the random walk (RW) model

performs well when it comes to forecasting exchange rates, surpassing models driven by exchange

rate determination theories. Cheung, Chinn, and Pascual (2005) presented additional evidence

highlighting the disconnection between exchange rates and economic fundamentals, revealing that

exchange rate models do not consistently outperform the RW model in out-of-sample forecasting.1

In a related study, Engel andWest (2005) make an intriguing observation that asset prices, including

the exchange rate, can exhibit a near unit root process, while remaining compatible with asset

pricing models as the discount factor tends towards one.2

On the contrary, there exists a group of researchers who have demonstrated that exchange rate

models can indeed outperform the RW model when considering longer time horizons. For instance,

Mark (1995) employed a regression model that analyzed multi-period changes (long-differenced) in

the nominal exchange rate based on deviations of the exchange rate from its fundamentals. The

study reported overall superior predictability of fundamentals for the exchange rate at longer hori-

zons. Similarly, Chinn and Meese (1995) also reported evidence supporting greater predictability

of exchange rate models compared to the RW model when considering longer horizons. Using over

two century-long annual frequency data, Lothian and Taylor (1996) report good out-of-sample pre-

dictability of fundamentals for the real exchange rate. Groen (2005) reported some evidence of

superior predictability of monetary fundamentals at longer horizons using a vector autoregressive

(VAR) model framework.3 Additionally, Engel, Mark, and West (2008) showed that out-of-sample

predictability can be enhanced by employing panel estimation techniques and focusing on long-

horizon forecasts.

1However, Engel and Hamilton (1990) reported some evidence that nonlinear models can outperform the RW

model. But their findings are still at odds with uncovered interest parity (UIP).
2Many researchers have provided panel evidence highlighting the close link between monetary models and exchange

rate dynamics. See for example, Rapach and Wohar (2004), Groen (2000), and Mark and Sul (2001).
3 It is worth noting that they demonstrated that the monetary fundamentals-based common long-run model tended

to outperform both the RW model and the standard cointegrated VAR model at horizons ranging from 2 to 4 years.
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Another group of researchers has started incorporating Taylor Rule fundamentals, along with

conventional monetary fundamentals, into their exchange rate forecasting models. Notable studies

in this area include Engel, Mark, and West (2008), Molodtsova, Nikolsko-Rzhevskyy, and Papell

(2008), Molodtsova and Papell (2009), Molodtsova and Papell (2013), and Ince, Molodtsova, and

Papell (2016). These studies emphasize the significance of Taylor Rule fundamentals in improving

the accuracy of exchange rate forecasts. Additionally, Rossi (2013) provides a survey of related

research that underscores the usefulness of Taylor Rules in understanding the dynamics of exchange

rates.4

The pioneering work of Stock and Watson (2002) has initiated a wave of research utilizing

latent common factors through principal components (PC) analysis for forecasting macroeconomic

variables. This approach has also been applied in the field of exchange rate research. A number

of researchers have employed large panels of time series data to gain deeper insights into exchange

rate dynamics. For instance, Engel, Mark, and West (2015) utilized cross-section information,

specifically PC factors that are obtained from a panel of 17 bilateral exchange rates relative to the

US dollar. They demonstrated that forecasting models based on these factors often outperformed

the RW model, particularly in the post-1999 sample period. The study also highlighted the strong

forecasting performance of the dollar factor in combination with Purchasing Power Parity (PPP)

factors. In a related study, Chen, Jackson, Kim, and Resiandini (2014) applied PC analysis to

extract latent common factors from 50 world commodity prices. Interestingly, their first common

factor was found to be closely linked to the dollar exchange rate, which aligns with the observation

that world commodities are predominantly denominated in U.S. dollars. They show that this first

common factor yields superior out-of-sample predictive contents for the dollar exchange rate.

Greenaway-McGrevy, Mark, Sul, and Wu (2018) demonstrate that exchange rates are primarily

driven by a dollar factor and a euro factor. Their dollar-euro factor model outperformed the RW

model in terms of out-of-sample prediction performance. Verdelhan (2018) utilized portfolios of

international currencies to extract two risk factors, namely the dollar factor and the carry factor,

which effectively explained exchange rate dynamics. Ca’ Zorzi, Kociecki, and Rubaszek (2015)

demonstrated that structural Bayesian vector autoregression (SBVAR) models with a Dornbusch

prior tended to outperform the RW model at medium horizons, although beating the RW model

in the short-run remained challenging.

While principal component (PC) analysis has been widely used in the forecasting and empirical

macroeconomics literature, Boivin and Ng (2006) pointed out that its forecasting performance may

be subpar if relevant predictive information is dominated by other factors within the analysis. This

is because PC extracts latent common factors without considering the specific relationship between

predictors and the target variable. To address this issue, we employ alternative data dimensionality

reduction methods, such as partial least squares (PLS) proposed by Wold (1982). PLS utilizes the

4 In a related work, Wang and Wu (2012) show the superior out-of-sample interval predictability of the Taylor Rule

fundamentals at longer horizons. Also, many researchers report in-sample evidence that Taylor rule fundamentals

help understand exchange rate dynamics. See among others, Mark (2009), Molodtsova, Nikolsko-Rzhevskyy, and

Papell (2008), Engel and West (2006), Clarida and Waldman (2008), and Kim, Fujiwara, Hansen, and Ogaki (2015).
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covariance between target and predictor variables to generate target-specific factors. For compar-

isons between PC and PLS approaches, Kelly and Pruitt (2015) and Groen and Kapetanios (2016)

provide relevant studies. In line with Bai and Ng (2008) and Kelly and Pruitt (2015), the Least

Absolute Shrinkage and Selection Operator (LASSO) technique is also used to select target-specific

groups of predictors from the full dataset, extracting more relevant factors for the target variable.

In this paper, we propose factor-augmented forecasting models for the dollar/won real exchange

rate. We utilize principal component (PC) analysis and partial least squares (PLS), as well as the

LASSO in combination with PC and PLS, to estimate common factors. Our estimation is based on

large panels of macroeconomic time series data consisting of 125 American and 192 Korean monthly

frequency variables, covering the period from October 2000 to March 2019. Given that most

macroeconomic data exhibit nonstationary integrated processes, see Nelson and Plosser (1982), we

apply these methods to first-differenced predictors to consistently estimate the factors. See Bai and

Ng (2004) for detailed explanations.

We also extract common factors from country-level global data using up to 43 country-level

variables related to prices and interest rates. This approach is motivated by exchange rate determi-

nation theories such as Purchasing Power Parity (PPP), Uncovered Interest Parity (UIP), and Real

Uncovered Interest Parity (RIRP). We conduct various out-of-sample forecasting exercises using

these factor estimates and examine which factors contribute to improving the prediction accuracy

of the exchange rate. We evaluate the out-of-sample predictability of our factor models using the

ratio of the root mean squared prediction error (RRMSPE) criteria.

Our key findings can be summarized as follows. First, our factor-augmented forecasting mod-

els outperform the random walk (RW) and autoregressive AR(1) benchmark models only when

American factors are incorporated. In contrast, the Korean factor-augmented models generally

underperform the AR model. However, they still outperform the RW model when the forecast

horizon is one year or longer. These findings deviate from conventional real exchange rate models,

which suggest that the relative economic performance of the two countries drives the bilateral real

exchange rate. We interpret these results in light of the observation that bilateral exchange rates

relative to the U.S. dollar tend to exhibit highly positive cross-correlations and move in tandem.

This suggests that American factors exert a dominant influence on the dynamics of these exchange

rates vis-à-vis the dollar, overshadowing idiosyncratic components specific to each country, such as

Korea.

Secondly, our findings indicate that our models tend to exhibit better performance at short

horizons when combined with American nominal/financial market factors. Conversely, models

incorporating American real activity factors outperform both the RW and AR models at longer

horizons. These results align with the findings of Boivin and Ng (2006), who emphasized the

importance of extracting more informative content from subsets of predictors.

Thirdly, we demonstrate that models incorporating factors motivated by Uncovered Interest

Parity (UIP) perform well when the U.S. serves as the reference country. However, factor models

based on Purchasing Power Parity (PPP) and Real Uncovered Interest Parity (RIRP) are outper-
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formed by the AR model regardless of the reference country. Overall, the factor models driven by

macroeconomic data tend to perform better than these proposition-based factor models.

The remainder of the paper is organized as follows. In Section 2, we provide a detailed descrip-

tion of how we estimate latent common factors using PC, PLS, and the LASSO when predictors

follow an integrated process. Section 3 presents data descriptions and preliminary statistical analy-

sis, including an examination of the in-sample fit to investigate the source of latent common factors.

In Section 4, we introduce our factor-augmented forecasting models and evaluation schemes. We

present and interpret the results of our out-of-sample forecasting exercises, and also compare the

performance of our data-driven factor forecasting models with alternative identification approaches,

proposition-based models, and nonstationary forecasting models. Finally, in Section 5, we provide

concluding remarks.

2 Methods of Estimating Latent Common Factors

This section explains how we estimate latent common factors by applying Principal Component

(PC), Partial Least Squares (PLS), and the Least Absolute Shrinkage and Selection Operator

(LASSO) to a large panel of nonstationary predictors.

2.1 Principal Component Factors

Since the seminal work of Stock and Watson (2002), PC has been popularly used in the current

forecasting literature. We begin with this approach to show how to estimate latent common factors

when predictors obey an integrated (1) process, largely based on the work of Bai and Ng (2004,

2010).

Consider a panel of  macroeconomic ×1 time series predictors/variables, x = [x1x2 x ],
where x = [1 2   ]

0   = 1   . We assume that each predictor x has the following

factor structure. Abstracting from deterministic terms,

 = λ
0
f

 +  (1)

where f =
h
1  


2  · · ·  

i0
is an ×1 vector of latent time-varying common factors at time 

and λ = [1 2 · · ·  ]
0
denotes an × 1 vector of time-invariant idiosyncratic factor loading

coefficients for x.  is the idiosyncratic error term.

Following Bai and Ng (2004, 2010), we estimate latent common factors by applying the PC

method to first-differenced data. This is because, as shown by Nelson and Plosser (1982), most

macroeconomic time series variables are better approximated by an integrated nonstationary sto-

chastic process. Note that the PC estimator of f would be inconsistent if  is an integrated

process. Differencing both sides of (1), we obtain the following.

∆ = λ
0
∆f


 +∆ (2)
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for  = 2 · · ·   . We first normalize the data, ∆x̃ = [∆x̃1∆x̃2 ∆x̃ ], then apply PC to

∆x̃∆x̃
0
to obtain the factor estimates ∆f̂ along with their associated factor loading coefficients

λ̂.
5 Naturally, estimates of the idiosyncratic component are obtained by taking the residual,

∆̂ = ∆̃− λ̂
0

∆f̂

 . The level variable estimates are then recovered via cumulative summation

as follows.

̂ =

X
=2

∆̂ f̂

 =

X
=2

∆f̂ (3)

It should be noted that this procedure yields consistent factor estimates even when x includes

some stationary (0) variables. For example, assume that x ,  ∈ {1  } is (0). Differencing it
once results in ∆x , which is still a stationary (−1) process. Therefore the PC estimator remains
consistent. Alternatively, one may continue to difference the variables until the null of nonstation-

arity hypothesis is rejected via a unit root test.6 However, this may not be practically useful when

unit root tests provides contradicting statistical inferences under alternative test specifications (i.e.,

number of lags, number of observations) in finite samples. See Cheung and Lai (1995) for related

discussions.

2.2 Partial Least Squares Factors

We employ PLS for a scalar target variable , which is a somewhat overlooked estimator in the

current literature. Unlike PC, the method of PLS generates target specific latent common factors,

which is an attractive feature. As Boivin and Ng (2006) pointed out, PC factors might not be

useful in forecasting the target variable when useful predictive contents are in a certain factor that

may be dominated by other factors.

PLS is motivated by the following linear regression model. Abstracting from deterministic

terms,

 = ∆x
0
β +  (4)

where ∆x = [∆1∆2 ∆]
0 is an  × 1 vector of predictor variables at time  = 1   ,

while β is an ×1 vector of coefficients.  is an error term. Again, we first-difference the predictor
variables assuming that x is a vector of (1) variables..

PLS is especially useful for regression models that have many predictors, that is, when  is

large.7 To reduce the dimensionality, rewrite (4) as follows,

 = ∆x
0
wθ +  (5)

=∆f
0

 θ + 

where ∆f =
h
∆1 ∆2  ∆

i0
    is an × 1 vector of PLS factors.

5This is because PC is not scale invariant. We demean and standardize each time series.
6This approach is used to construct the Fred-MD database. The Fred-MD is available at

https://research.stlouisfed.org/econ/mccracken/fred-databases/.
7For example, the least squares estimator is not even feasible when  is greater than  .
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Note that ∆f is a linear combination of all predictor variables, similar to ridge regression,

that is,

∆f = w
0
∆x (6)

where w = [w1w2 w] is an  ×  weighting matrix. That is, w = [1 2  ]
0
,

 = 1  , is an  × 1 vector of weights on predictor variables for the  PLS factor, ∆ .

θ is an  × 1 vector of PLS regression coefficients. PLS regression minimizes the sum of squared

residuals from the equation (5) for θ instead of β in (4).

It should be noted that we do not utilize θ for our out-of-sample forecasting exercises in the

present paper. To make it comparable to PC factors, we utilize PLS factors ∆f , then augment

the benchmark forecasting model with estimated PLS factors ∆f̂ .

Among available PLS algorithms, see Andersson (2009) for a brief survey, we use the one

proposed by Helland (1990) that is intuitively appealing. Helland’s algorithm to estimate PLS

factors for a scalar target variable  is as follows.

First, ∆̂1 is pinned down by the linear combinations of the predictors in ∆x.

∆̂1 =

X
=1

1∆ (7)

where the loading (weight) 1 is given by (∆). Second, we regress  and ∆ on

∆̂1 then get residuals, ̃ and ∆̃, respectively, to remove the explained component by the

first factor ∆̂1 . Next, the second factor estimate ∆̂2 is obtained similarly as in (7) with

2 = (̃∆̃). We repeat until the 
th factor ∆̂ is obtained. Note that this algorithm

generates mutually orthogonal factors.

2.3 Least Absolute Shrinkage and Selection Operator Factors

We employ a shrinkage and selection method for linear regression models, the LASSO, which is often

used for sparse regression. Unlike ridge regression, the LASSO selects a subset (x) of predictor

variables from x by assigning 0 coefficient to the variables that are relatively less important in

explaining the target variable. Putting it differently, we implement the feature selection task using

the LASSO.

The LASSO puts a cap on the size of the estimated coefficients for the ordinary least squares

(LS) driving the coefficient down to zero for some predictors. The LASSO solves the following

constrained minimization problem using 1-norm penalty on .

min


(
1



X
=1

( −∆x0β)2
)
 s.t.

X
=1

| | ≤  (8)

where ∆x = [∆1∆2 ∆]
0 is an ×1 vector of predictor variables at time  = 1   , β

is an ×1 vector of associated coefficients. As the value of tuning (penalty) parameter  decreases,
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the LASSO returns a smaller subset of x, setting more coefficients to zero.

Following Kelly and Pruitt (2015), we choose the value of  to generate a certain number of

predictors by applying the LASSO to ∆x. We then employ the PC and PLS approaches to extract

common factors, ∆f

 or ∆f


 , out of the predictor variables that are chosen by the LASSO

regression. The variables selected from the regression were based on the entire period and the tuning

parameter was selected accordingly. Similar to our PLS approach, we use the LASSO method only

to obtain the subset of predictors that are closely related to the target. Having obtained them, we

use a rolling window approach to extract the common factors using PC and PLS methods described

above.

3 In-Sample Analysis

3.1 Data Descriptions

We employ two sets of large panel macroeconomic data in the U.S. and Korea to assess and

compare the predictability of these dataset for the real dollar/won exchange rate. For this purpose,

we obtained a panel of 126 American macroeconomic time series variables from the FRED-MD

database. We also obtained 192 Korean macroeconomic time series data from the Bank of Korea.

Korea has maintained a largely fixed exchange rate regime for the dollar-won exchange rate until

around 1980, then switched to a heavily managed floating exchange rate regime. Korea continued

such dirty float or managed float until they were forced to adopt a market based exchange rate

regime after they got hit by the Asian Financial Crisis in 1997.

We focus on the free floating exchange rate regime in 2000’s after the Korean economy fully

recovered from the crisis. Observations are monthly and span from October 2000 to March 2019

to utilize reasonably many monthly predictors in Korea. We use the consumer price index (CPI)

to transform the nominal KRW/USD exchange rate to the real exchange rate.

We categorized 126 American predictors into 9 groups. Groups #1 through #4 include real

activity variables that include industrial productions and labor market variables, while groups

#5 to #9 are nominal/financial market variables such as interest rates and prices in the U.S.

Similarly, we categorized 192 Korean predictors into 13 groups. Groups #1 through #6 include

real activity variables that include inventories and industrial productions, while groups #7 to #13

are nominal/financial market variables such as interest rates and monetary aggregates. See Table 1

for more detailed information. We log-transformed all quantity variables prior to estimations other

than those expressed in percent (e.g., interest rates and unemployment rates).

Table 1 around here
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3.2 Unit Root Tests

We first implement some specification tests for our analysis. Table 2 presents the augmented Dickey

Fuller (ADF) test results for the log real exchange rate ( =  +  − 
 ) and the log nominal

exchange rate (). The ADF test rejects the null of nonstationarity for  at the 5% significance

level, while it fails to reject the null hypothesis for  at any conventional level. Note that these

results are consistent with standard monetary models in international macroeconomics. Recall, for

example, that purchasing power parity (PPP) is consistent with stationary  and nonstationary ,

because PPP implies a cointegrating relationship [1 1] between  and the relative price ( =

 − 
 ) for the real exchange rate  in the long-run.

Next, we implement a panel unit root test for predictor variables in the US (x ) and in

Korea (x
 ) via the Panel Analysis of Nonstationarity in Idiosyncratic and Common components

(PANIC) analysis by Bai and Ng (2004, 2010). The PANIC procedure estimates common factors

(   = 1 2  ) via PC as explained in the previous section, then test the null of nonstationarity

for common factors via the ADF test with an intercept. It also implements a panel unit root test

for de-factored idiosyncratic components of the data by the following statistic.

̂ =
−2P

=1 ln ̂ − 2
212



where ̂ denotes the -value of the ADF statistic with no deterministic terms for de-factored

∆.
8

Note that we also test the null hypothesis for the common factors of subsets of x, that is, real

and financial sector variables separately. This is because we are interested in the out-of-sample

predictability of the common factors from these subsets of the data. In what follows, we show

American real activity factors (

   = 1 2  ) include more long-run predictive contents,

whereas American financial market factors (

   = 1 2  ) yield superior predictability in

the short-run, which is consistent with the implications of Boivin and Ng (2006).

The PANIC test fails to reject the null of nonstationarity for all common factor estimates at the

5% significance level with an exception of the second financial factor in the US. Its panel unit root

test rejects the null hypothesis that states all variables are (1) processes for all cases.9 However,

nonstationary common factors eventually dominate stationary dynamics of de-factored idiosyncratic

components.10 Hence, test results in Table 2 provide strong evidence in favor of nonstationarity in

the predictor variables x, which is consistent with Nelson and Plosser (1982).

Table 2 around here

8̂ statistic has an asymptotic standard normal distribution. The panel test utilizes the p-value of the ADF

statistics with no deterministic terms, because defactored variables are mean-zero residuals.
9The alternative hypothesis is that there is at least one stationary variable.
10See Kim and Kim (2018) for a simulation study that shows the dominance of stationary components over non-

stationary components in small samples.
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3.3 Factor Model In-Sample Analysis

This section describes some in-sample properties of the factor estimates we discussed in previous

section. The in-sample factors are estimated based on the entire available data, and therefore these

factors will be different that of the out-of-sample factors obtained in the next section. Figure 1

presents in-sample fit analysis for the KRW/USD real exchange rate. Three figures in top row

report cumulative 2 statistics of PC and PLS factors obtained from all predictors, real activity

predictors, and financial sector predictors in the US, respectively from left to right. Three figures

in bottom row provide cumulative 2 values of Korean factors similarly. Some interesting findings

are as follows.

First, the PLS factors (dashed lines) provide a notably better in-sample fit in comparison with

the performance of PC factors (solid lines). This is because PLS utilizes the covariance between the

target and the predictor variables, while PC factors are extracted from the predictor variables only.

It is also interesting to see that the cumulative 2 statistics of PLS factors overall exhibit a positive

slope at a decreasing rate as the number of factors increases, whereas additional contributions of PC

factors show no such patterns. This is mainly due to the fact that our PLS algorithm sequentially

estimates orthogonalized common factors after removing explanatory power of previously estimated

factors. The PC method extracts common factors without considering the target variable, hence

the additional contribution of PC factors does not necessarily decrease.

Second, American factors greatly outperform Korean factors. Cumulative2 values of American

PLS factors reach well above 60%, while Korean PLS factors cumulatively explain less than 40%

of variations in the real exchange rate. Note that Korean PC factors yield virtually no explanatory

power. These findings imply that Korean macroeconomic variables might not play an important

role in explaining the Won/Dollar real exchange rate dynamics, while American predictors contain

substantial predictive contents for it.

Figure 1 around here

We relate such findings with a strong degree of cross-correlations of many bilateral exchange

rates relative to the US dollars, implying that American factors better explain dynamics of exchange

rates vis-à-vis the U.S. dollar than idiosyncratic factors in local countries such as Korea. To see

this, we implement a formal test by Pesaran (2021) for the cross-section dependence in 36 bilateral

real exchange rates against the U.S. dollar including 16 euro-zone countries.11

11We obtained all nominal exchange rates and CPIs from the IFS for the sample period from September 2000 to

December 2018. 16 eurozone countries that are included are Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Portugal, Slovakia, Slovenia, and Spain. We were able

to retrieve 20 non-eurozone countries including Brazil, Canada, Chile, China, Colombia, Czech Republic, Denmark,

Hungary, India, Indonesia, Israel, Japan, Korea, Mexico, Poland, Russia, Singapore, Switzerland, Sweden, and the

UK. We obtained the Singapore CPI from the Department of Statistics of Singapore.
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Consider the following test statistic.

 =

s
2

( − 1)

⎛⎝−1X
=1

X
=+1

̂

⎞⎠ −→ (0 1)

where ̂ is the pair-wise correlation coefficients from the residuals of the ADF regressions for

each real exchange rate.12 The  statistic was 176748 ( = 0000) implying strong empirical

evidence of cross-section dependence at any conventional significance level.

The heat map in Figure 2 clearly demonstrates such strong cross-correlations in the real ex-

change rate relative to the U.S. dollar. With some exceptions such as China that often employs

managed float, most real exchange rates exhibit highly correlated contemporaneous relations. The

average ̂ was 0446, while the average ̂ of all countries was 0481.

We obtained similar results even when we exclude all euro-zone countries. The  statistic

was 59019 ( = 0000) and the average ̂ was 0293. Such strong cross-correlations of many

bilateral real exchange rates imply a dominant role of the reference country, that is, the U.S. in

determining the dynamics of these bilateral exchange rates.

Figure 2 around here

Third, PLS factors from American real activity groups and financial variable groups explain

variations in the KRW/USD real exchange rate similarly well. On the other hand, the contribution

of PLS Korean factors mostly stem from that of PLS Korean financial sector factors. PLS real

Korean factors explain less than 10% of variations jointly even when 12 factors are utilized.

Next, we investigate the source of these common factor estimates via the marginal 2 analysis.

That is, we regress each predictor onto the common factor and record what proportion of the

variation can be explained by the common factor. Results are reported in Figures 3 to 5 for the

first common factor from the entire predictors, real activity variables, and nominal/financial market

variables, respectively.

As can be seen in Figure 3, we note that the marginal 2 statistics of the first American PC

factor (solid lines) are very similar to those of the first PLS American factor (bar graphs). On the

other hand, the marginal 2 statistics of the first Korean PC factor is quite different from the PLS

factor. More specifically, the marginal 2 statistics of the Korean PLS factor are negligibly low in

comparison with those of the PC factor. Since PC factors are obtained only from the predictors

with no reference on the target variable, the marginal 2 values of the PC factor are expected

to be high. However, since PLS factors are estimated using the covariance of the target variable

and the predictor, low 2 statistics of the Korean PLS factor imply that Korean predictors are

12We implemented the ADF regression for each real exchange rate relative to the U.S. dollar via the general-to-

specific rule with maximum 6 lags, then calculated pair-wise correlation coefficients using the ADF regression residuals

of 35 real exchange rates.
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largely disconnected from the KRW/USD real exchange rate. This is consistent with negligibly low

cumulative 2 statistics in Figure 1.

Note also that PLS American factors are more closely connected with groups #1 (industrial

production) and #2 (labor market) than other groups. Put it differently, the first PLS American

factor seems to be strongly driven by these real activity variables rather than financial market

variables and other real activity variables. We also point out that these two groups include key

variables that influence the Fed’s decision making process of U.S. monetary policy stance under its

dual mandate. That is, they are potentially useful predictors of financial market conditions.

Figure 3 around here

We investigate the source of the common factors in a more disaggregated level, looking at the

marginal 2 statistics of the real and financial market factors. Figure 4 reports the 2 statistics

of the first American real activity factor. Again, the PLS and PC factors turn out to explain the

variations in real activity variables similarly well. We also note that the American real activity

factor is mainly driven by industrial production (Group #1) and labor market (Group #2) variables.

However, the PLS Korean real activity factor explains negligible variations in Korean real activity

variables, while the first PC factor exhibits reasonably high 2 statistics. This again confirms our

previous findings. Similar results were observed from the marginal 2 analysis for the first financial

market PLS and PC factors in Figure 5. The American PLS and PC nominal/financial market

factors seem to be driven mostly by CPIs and PPIs in the US.

Figures 4 and 5 around here

4 Out-of-Sample Prediction Performance

4.1 Factor-Augmented Forecasting Models

This section reports our out-of-sample forecast exercise results using factor-augmented forecasting

models for the KRW/USD real exchange rate. Based on the ADF test results in Table 2, we employ

the following stationary (1)-type stochastic process for the real exchange rate . Abstracting

from an intercept,

+ =  + +   = 1 2   (9)

where  is less than one in absolute value for stationarity. Note that we regress the -period ahead

target variable (+) directly on the current period target variable () instead of using a recursive

12



forecasting approach with an AR(1) model, +1 =  + +1, which implies  =  under that

approach. With this specification, the -period ahead forecast is,

b+| = ̂ (10)

where ̂ is the least squares (LS) estimate of  in (9).

We augment (9) by adding factor estimates. That is, our factor augmented stationary (1)-

type forecasting model is the following.

+ =  + β
0
∆f̂  + +   = 1 2   (11)

We again employ a direct forecasting approach by regressing + directly on  and the estimated

factors (∆f̂). Note that (11) coincides with an exact (1) process when  = 1, but extended by

the factor covariates ∆f̂. Note also that (11) nests the stationary benchmark model (9) when ∆f̂ 

does not contain any useful predictive contents for + , that is, β = 0. We obtain the following

-period ahead forecast for + , b
+| = ̂ + β̂

0

∆f̂ (12)

where ̂ and β̂ are the LS coefficient estimates from (11).

We evaluate the out-of-sample predictability of our factor-augmented forecasting model b
+| us-

ing a fixed-size rolling window scheme as follows.13 We use initial 0   observations, {∆}0=1,
 = 1 2   to estimate the first set of factors

n
∆f̂

o0
=1

using one of our data dimensionality

reduction methods. We formulate the first forecast b
0+|0 by (12), then calculate and keep the

forecast error (

0+|0). Next, we add one observation ( = 0+1) but drop one earliest observation

( = 2) for the second round forecasting. That is, we re-estimate
n
∆f̂

o0+1
=2

using {∆}0+1=2 ,

 = 1 2  , maintaining the same number of observations (0) in order to formulate the second

round forecast, ̂
0++1|0+1, and its resulting forecast error 


0++1|0+1. We repeat until we fore-

cast the last observation,  . We implement the same procedure for the benchmark forecast b+|
by (10) in addition to the no-change Random Walk (RW) benchmark b

+| = .
14

We employ the ratio of the root mean square prediction error () to evaluate the

-period ahead out-of-sample prediction accuracy of our factor augmented models relative to the

benchmark. That is,

() =

r
1

−−0+1
P−

=0

³

+|

´2
r

1
−−0+1

P−
=0

³


+|

´2  (13)

13Rolling window schemes tend to perform better than the recursive method in the presence of structural breaks.

However, results with recursive approaches were qualitatively similar.
14Consider a random walk model, 


+1 =  + +1,where +1 is a white noise process. Therefore, -period

ahead forecast from this benchmark RW model is simply .
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where

+| = + − b+| 

+| = + − b+|  =  (14)

Note that ()  1 indicates that our factor models outperform the benchmark models.15

4.2 Prediction Accuracy Evaluations for the Real Exchange Rate

We implement out-of-sample forecast exercises using a fixed-size (50% split point, that is, 0 = 2)

rolling window method with up to 3 () latent factor estimates.16 Latent common factors are

acquired via the PLS, PC, and LASSO methods for large panels of macroeconomic data of the U.S.

and Korea.

Table 3 reports the  statistics of our forecasting model b
+| relative to b+|. Recall

that our models outperform the RW benchmark when the  is greater than one. We also

obtained the  statistics of b
+| relative to b+| (not reported to save space), and the

superscript ∗ indicates that b
+| outperforms b+|. In fact, since the AR benchmark performs

better than the RW model, it implies that b
+| outperforms both the benchmarks b+| and b+|.

Our major findings are as follows.

First, the American predictors yield superior predictive contents for the KRW/USD real ex-

change rate, while the Korean factor models perform relatively poorly. That is, our factor models

outperform both the RW and AR models only when the American factors are employed. The mod-

els with the Korean factors overall got dominated by the AR model although they still outperform

the RW model when the forecast horizon is one-year or longer. Recall that these empirical findings

are consistent with our in-sample fit analysis shown in the previous section. Interestingly, when we

combine the American factors with equal numbers of the Korean factors, the performance tends

to deteriorate. That is, the  often decreases in comparison with those of the American

factor augmented models implying that the Korean factors may add noise in our combined models.

Second, we observe that our American factor models tend to perform better at short horizons

when combined with nominal/financial market factors, while real activity factors improve the pre-

dictability at longer horizons. That is, the good prediction performance of our models with the

total factors, ∆f̂ or ∆f̂ , at 1-period horizon seem to inherit the superior performance of our

models with financial market factors, ∆f̂

 or ∆f̂


 , while superior long-run predictability

seems to stem from predictive contents of real activity factors, ∆f̂

 or ∆f̂


 . These results

imply that factors obtained from subsets may provide more useful information than factors from

the entire predictor variables, which is consistent with Boivin and Ng (2006).

Table 3 around here

15Alternatively, one may employ the ratio of the root mean absolute prediction error (). Results are

overall qualitatively similar.
16We obtained qualitatively similar results with a 70% sample split point.
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We also employ the LASSO approach to select the subsets of the predictor variables that are

useful to explain the target variable. The idea behind that is to estimate the factors using fewer

but more informative predictor variables as discussed by Bai and Ng (2008). Following Kelly and

Pruitt (2015), we adjust the tuning parameter  in (8) to choose a group of 30 predictors from each

panel of macroeconomic variables in the US and in Korea, while 20 predictors were chosen from

each of the real activity and the financial market variable groups. Then, we employed PLS and PC

to estimate up to 3 common factors to augment the benchmark AR model.

As we can see in Table 4, results are qualitatively similar to previous ones. The financial factor

augmented forecasting models tend to perform better for the 1-period ahead forecasts, while real

factors provide superior predictive contents for the real exchange rate at longer horizons. The

Korean factor-augmented models perform overall poorly relative to the AR model, although they

still outperform the RW model when the forecast horizon is 1-year or longer.

Table 4 around here

4.3 Model Predictability with Proposition Based Global Factors

This section implements out-of-sample forecast exercises using the models that are augmented by

global factors, motivated by three exchange rate determination theories: Purchasing Power Parity

(PPP); Uncovered Interest Parity (UIP); Real Interest Rate Parity (RIRP).

4.3.1 Purchasing Power Parity: Relative Price Factors

We first employ PPP to identify common global factors. Under PPP, the real exchange rate 

(=  + ) is stationary, while the log nominal exchange rate  and the log relative price 

(=  − ∗ ) are nonstationary (1) processes. Put it differently, there exists a cointegrating vector

[1 1] for  (foreign currency price of 1 USD) and , where  and ∗ are the log prices in the
U.S. and in the foreign country, respectively. Recall that our unit root test results in Table 2 are

consistent with PPP.

We obtained the Consumer Price Index (CPI) of 43 countries from the IFS database including

18 euro-zone countries. Assuming that the U.S. is the home/reference country, we constructed 42

relative prices ( − ∗ ), then estimated the first common factor from these relative prices after

taking the first difference (∆−∆∗ ), or (−∗ ), since the relative price is an integrated process.
Also, we extracted the common factors from the 42 relative prices with Korea as the reference

15



country.17 18

We report -period ahead out-of-sample predictability exercise results (50% split point) for

the Won-Dollar real exchange rate using one factor models when the U.S. or Korea serves as the

reference country in Table 5. Results imply overall poor performance of PPP motivated factor

models irrespective of the choice of the numéraire currency.

Our factor models overall outperform the RW model when the forecast horizon is 1-year or

longer, which is consistent with the view that PPP is a long-run proposition. However, our PPP

factor models rarely beat the AR benchmark model nor our data-driven macroeconomic factor

models presented in the previous section. It is not surprising to find similar performance of the

Korean reference factor model as the American factor model, since they include fundamentally

similar information of CPIs in 43 countries.

Table 5 around here

4.3.2 Uncovered Interest Parity: Interest Rate Spread

The second proposition we adopt is Uncovered Interest Parity (UIP). Abstracting from risk pre-

mium, UIP states the following.

∆+1 = ∗ −  + +1 (15)

where ∆+1 is the nominal exchange rate return, that is, appreciation (depreciation) rate of the

home (foreign) currency, while  and 
∗
 are nominal short-run interest rates in the home and foreign

countries, respectively. +1 = ∆+1−∆+1 is the mean-zero (+1 = 0) rational expectation

error term.

Motivated by (15), we obtained 18 international short-term interest rates from the FRED and

the OECD database to construct nominal interest rate spreads by subtracting US interest rate ()

from the national interest rate (∗ ).19 We estimate the first common factor via PLS and PC from
the balanced panel of 17 interest rate spreads relative to American interest rate. We took the first

difference of the spreads to make sure we estimate factors consistently.20 Similarly, we estimated

the first common factor from 17 interest rate spreads relative to Korean interest rate.

17For the group of developed countries, we include 11 euro-zone countries (Austria, Belgium, Finland, France,

Germany, Greece, Italy, Luxembourg, Netherlands, Portugal, Spain) and 8 non-euro-zone countries (Canada, Den-

mark, Japan, Singapore, Switzerland, Sweden, United Kingdom, United States). All data are obtained from the

IFS database with an exception of Singapore. We obtained the Singapore CPI from the Department of Statistics of

Singapore. In addition to the group of 19 developed countries, we added 7 the rest of euro-zone countries (Cyprus,

Estonia, Ireland, Latvia, Lithuania, Slovakia, Slovenia) except Malta, and 17 non-euro-zone countries (Brazil, China,

Chile, Colombia, Czech Republic, Hong Kong, Hungary, India, Indonesia, Israel, Korea, Malaysia, Mexico, Poland,

Romania, Russia, Saudi Arabia).
18We focus on the relative price factor because of lack of available nominal exchange rates in the presence of

euro-zone countries.
19For the group of developed countries, we include 11 euro-zone countries (Austria, Belgium, Finland, France, Ger-

many, Greece, Italy, Luxembourg, Netherlands, Portugal, Spain) and 7 non-euro-zone countries (Canada, Denmark,

Japan, Switzerland, Sweden, United Kingdom, United States). All data are obtained from the OECD database and

the FRED.
20The PANIC test provides strong evidence of nonstationarity for the interest rate spreads.
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We also employ a similar factor model as (9) but for the nominal exchange rate return ∆.

Since  is an integrated process, we employ the following (1)-type model for ∆. Abstracting

from an intercept,

∆+ = ∆ + +   = 1 2   (16)

where  is less than one in absolute value for stationarity.
21 Note that we regress the -period

ahead target variable (∆+) directly on the current period exchange rate return (∆). Then, the

-period ahead forecast is,

∆̂+ = ̂∆ (17)

while the corresponding factor augmented forecasting model is given as follows.

∆+ = ∆ + β
0
∆f̂  + +   = 1 2   (18)

which augment (16) by adding factor estimates (∆f̂). The -period ahead forecast for the exchange

rate return is,

∆b
+| = ̂∆ + β̂

0

∆f̂ (19)

where ̂ and β̂ are the LS coefficient estimates.

The first 2 columns of Table 6 reports the  statistics of the 1-period ahead out-

of-sample forecasts for the nominal exchange rate return (∆) using the UIP motivated factors.

The American UIP-PLS factor forecasting models perform well relative to both benchmark models.

The American macroeconomic data driven PLS models perform similarly well. The Korean UIP

factor models overall performed poorly except when we included two UIP factors. However, they

perform better than the Korean macroeconomic factor augmented models, highlighting marginal

but potentially important contributions of the UIP global factors.

Table 6 around here

4.3.3 Real Interest Rate Parity: Real Interest Rate Spread

The last proposition we employ is Real Interest Rate Parity (RIRP), which combines PPP with

UIP. Taking the first difference to the PPP equation ( =  +  − ∗ ) at time + 1,

∆+1 = ∆+1 + +1 − ∗+1 (20)

Combining (15) and (20), we obtain the following expression for RIRP.

∆+1 = ∗ −  + +1 (21)

21That is, we assume that there are two eigenvalues for the level exchange rate, 1 and 1.
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where  =  − +1 and ∗ = ∗ − ∗+1 are the ex post real interest rates in the home and foreign
country, respectively. Note that this specification is inconsistent with the ADF test results in

Table 2 that provides strong empirical evidence in favor of the stationarity of the real KRW/USD

exchange rate, although it shows highly persistent dynamics similar to that of the nominal exchange

rate.

Using international CPIs and short-run interest rates we used, we estimated the first common

factors by applying PLS and PC to a panel of 17 real interest rate spreads (∗ − ) without taking

differences. This is because we obtained very strong evidence in favor of stationarity for real interest

rate spreads.22

Similar to the previous section, we estimate the common factors from the macroeconomic data

for ∆ to compare the results with the RIRP based models. Results are reported in Table 7.

 statistics in the first two columns demonstrate the RIRP global common factors

are not useful whichever country serves as the reference country. However, our macroeconomic

data driven PLS factor models outperform both benchmark models when the American factors

are employed. Again, the Korean factor models perform quite poorly relative to both benchmark

models.

Table 7 around here

5 Concluding Remarks

In this paper, our objective is to propose parsimonious factor-augmented forecasting models for the

dollar/won real exchange rate within a data-rich environment. We leverage various data dimen-

sionality reduction techniques on extensive panels of macroeconomic time series data, consisting

of 125 American and 192 Korean monthly frequency variables, covering the period from October

2000 to March 2019. In addition to the widely used Principal Component (PC) analysis in the

literature, we introduce the Partial Least Squares (PLS) approach and combine the Least Absolute

Shrinkage and Selection Operator (LASSO) with PC and PLS to extract target-specific common

factors specifically for the dollar/won real exchange rate.

We enhance benchmark forecasting models by incorporating the estimated common factors and

generate out-of-sample forecasts. To assess the prediction accuracy of our proposed models for the

real exchange rate compared to the random walk (RW) and stationary autoregressive (AR) models,

we employ the ratio of the root mean squared prediction error () criteria. By employing

these methodological approaches, we aim to provide more accurate and parsimonious forecasting

models for the dollar/won real exchange rate, improving upon traditional benchmark models.

Our proposed forecasting models consistently demonstrate superior performance compared to

both the random walk (RW) and autoregressive (AR) benchmark models, but this is only achieved

22The PANIC test results are available upon request.
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when utilizing latent common factors derived from the American predictors. Specifically, models

incorporating American real activity factors exhibit strong performance at longer horizons, while

American nominal/financial market factors enhance prediction accuracy at shorter horizons. These

findings align with the research of Boivin and Ng (2006), who emphasized the importance of iden-

tifying relevant common factors for the target variable. In contrast, models incorporating Korean

factors generally underperform compared to the AR model, although they still outperform the RW

model for forecast horizons of 1 year or longer.

In addition, we conduct forecasting exercises using global common factors motivated by ex-

change rate determination theories such as Purchasing Power Parity (PPP), Uncovered Interest

Parity (UIP), and Real Uncovered Interest Parity (RIRP). The models incorporating UIP common

factors perform reasonably well when the US is considered as the reference country. However,

models incorporating PPP or RIRP factors exhibit subpar performance regardless of the reference

country. Overall, our findings highlight the importance of selecting relevant factors and consid-

ering the specific economic context when constructing forecasting models for the dollar/won real

exchange rate.
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Table 1. Macroeconomic Data Descriptions

American Data

Group ID Data ID Data Description

#1 1-16 Industrial Production Indices

#2 17-47 Labor Market Variables

#3 48-57 Housing Inventories

#4 58-65 Manufacturers’ Consumption/ New Orders

#5 66-79 Monetary Aggregates

#6 80-96 Domestic Interest Rates

#7 97-116 Producer/Consumer Prices

#8 117-121 Stock Indices

#9 122-126 Exchange Rates

Korean Data

Group ID Data ID Data Description

#1 1-27 New Orders

#2 28-34 Inventory

#3 35-52 Housing

#4 53-74 Retails/Manufacturing

#5 75-87 Labor

#6 88-98 Industrial Production

#7 99-102 Business Condition

#8 103-114 Stock Indices

#9 115-127 Interest Rates

#10 128-145 Exports/Imports Prices

#11 146-163 Prices

#12 164-180 Money

#13 181-192 Exchange Rates

Note: We obtained the American data from the FRED-MD website. The Korean Data was

obtained from the Bank of Korea.
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Table 2. Unit Root Test Results

ADF Test

 −2966†
(0038)

 −1953
(0308)

PANIC Test

x x


1 −2519
(0100)

1 1186
(0998)

2 −1270
(0641)

2 −2085
(0237)

̂ 11341‡
(0000)

̂ 16667‡
(0000)



1 −2443

(0124)


1 −0634

(0868)



2 −2393

(0133)


2 −2057

(0254)

̂ 5763‡
(0000)

̂ 15552‡
(0000)



1 −1888

(0326)


1 1250

(0999)



2 −3437‡

(0009)


2 −1544

(0512)

̂ 6425‡
(0000)

̂ 8711‡
(0000)

Note:  and  are the CPI-based real and the nominal bilateral Won/Dollar exchange rate,

respectively. PLS estimates target specific factors for  and  separately, while PC yields

common factors independent on the target variable. Real variables are from group #1 through

#4 for American factors and groups #1 through #7 for Korean factors, while financial variables

include group #5 through #9 for American factors and groups #8 through #13 for Korean

factors. The augmented Dickey-Fuller (ADF) test reports the ADF t-statistics when an intercept

is included. P -values are in parenthesis. For the PANIC test results, we report the ADF t-

statistics with an intercept for each common factor estimate. ̂ denotes the panel test statistics

from the de-factored idiosyncratic components. ‡ and † denote a rejection of the null hypothesis
at the 1% and 5% level, respectively.
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Table 3. Out-of-Sample Predictability for the Real Exchange Rate

American Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 1 1.0115∗ 1.0077 1.0074 1.0251∗ 1.0088∗ 1.0144∗

2 1.0355∗ 0.9971 1.0198∗ 1.0148∗ 1.0023 1.0155∗

3 1.0266∗ 0.9941 1.0223∗ 1.0142∗ 0.9680 1.0223∗

12 1 1.3440∗ 1.3611∗ 1.2499∗ 1.3194∗ 1.3375∗ 1.2380

2 1.3389∗ 1.3469∗ 1.0965 1.2573∗ 1.3375∗ 1.2352

3 1.2421∗ 1.2246 1.0243 1.2572∗ 1.3308∗ 1.1217

36 1 1.4269∗ 1.4466∗ 1.2710 1.3742∗ 1.4271∗ 1.2409

2 1.2736 1.3948∗ 1.2316 1.3142 1.3980∗ 1.2585

3 1.2232 1.4229∗ 1.2715 1.3225 1.3882∗ 1.2300

Korean Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 1 0.9006 1.0029 0.9382 0.6836 0.8443 0.9646

2 0.6329 0.9441 0.9450 0.4931 0.8644 0.2871

3 0.4880 0.8965 0.5315 0.2348 0.7819 0.1707

12 1 1.2607∗ 1.2162 1.2698∗ 1.2381 1.2422∗ 1.2074

2 1.2431∗ 1.1635 1.2362 1.2067 1.2433∗ 1.1877

3 1.2380 1.0719 1.2288 1.2159 1.2298 1.2485∗

36 1 1.3737∗ 1.3787∗ 1.3883∗ 1.3752∗ 1.3652 1.3797∗

2 1.3498 1.2832 1.3850∗ 1.3843∗ 1.3425 1.3809∗

3 1.1916 1.1056 1.3377 1.3847∗ 1.3435 1.3687

American and Korean Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 2 0.9469 1.0082∗ 0.9542 0.8242 0.8925 0.9781

4 0.9441 0.9419 0.8800 0.4030 0.8900 0.2400

6 0.5604 0.8730 0.5753 0.2230 0.7975 0.1871

12 2 1.3503∗ 1.3203∗ 1.2704∗ 1.3054∗ 1.3351∗ 1.1799

4 1.3055∗ 1.2448∗ 1.0548 1.1873 1.3342∗ 1.1753

6 1.1377 1.0888 0.9167 1.1621 1.3277∗ 1.1377

36 2 1.4278∗ 1.4534∗ 1.2882 1.3655 1.4190∗ 1.2216

4 1.2430 1.3358 1.2300 1.2845 1.3804∗ 1.2352

6 1.1017 1.1954 1.2246 1.2733 1.3578 1.2321

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample

split point. RRMSPE denotes the mean squared prediction error (RMSPE ) from the bench-

mark random walk (RW) model divided by the RMSPE from each competing model with 

factors. Superscript R and F mean that factors were estimated from real and financial vari-

ables, respectively. RRMSPE statistics that are greater than 1 indicate that the competing

model outperforms the benchmark RW model. ∗ denotes the cases that the competing model
outperforms the benchmark AR model as well as the RW model.
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Table 4. Out-of-Sample Predictability with LASSO for the Real Exchange Rate

American Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 1 1.0162∗ 1.0218∗ 1.0188∗ 1.0392∗ 1.0184∗ 1.0329∗

2 1.0388∗ 0.9849 1.0261∗ 1.0451∗ 1.0160 1.0520∗

3 1.0387∗ 0.9807 1.0379∗ 1.0419∗ 1.0278∗ 1.0474∗

12 1 1.2145 1.3792∗ 1.1614 1.2515∗ 1.3354∗ 1.2413

2 1.1729 1.3456∗ 1.1068 1.2305 1.3549∗ 1.1742

3 1.1734 1.3395∗ 1.1350 1.0718 1.3060∗ 1.1282

36 1 1.2970 1.5208∗ 1.2753 1.3555 1.4750∗ 1.3515

2 1.3264 1.4849∗ 1.3718 1.2840 1.4654∗ 1.3337

3 1.2664 1.4729∗ 1.3596 1.3029 1.4816∗ 1.3415

Korean Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 1 0.9735 1.0022 0.9773 0.5423 0.9743 0.5820

2 0.4596 0.9929 0.6262 0.5492 0.9646 0.3462

3 0.5694 0.9760 0.6352 0.3133 0.9632 0.2832

12 1 1.2271 1.2144 1.2199 1.1532 1.2434∗ 1.1571

2 1.1769 1.2247 1.1618 1.1656 1.2418∗ 1.1594

3 1.1812 1.2154 1.1611 1.1720 1.2274 1.1600

36 1 1.3667 1.2937 1.3728 1.3919∗ 1.3654 1.3920∗

2 1.3624 1.3071 1.3783∗ 1.3936∗ 1.3648 1.3919∗

3 1.3794∗ 1.2798 1.2943 1.4058∗ 1.3316 1.3155

American and Korean Factors

 #Factors ∆f ∆f

 ∆f


 ∆f ∆f


 ∆f




1 2 0.9954 1.0169∗ 0.9854 0.5882 0.9919 0.6359

4 0.5416 0.9679 0.7121 0.6120 0.9696 0.4283

6 0.6234 0.9530 0.6667 0.3999 0.9695 0.3120

12 2 1.2325 1.3289∗ 1.1751 1.1768 1.3298∗ 1.1787

4 1.0980 1.3127∗ 1.0330 1.1387 1.3483∗ 1.0954

6 1.0936 1.2745∗ 1.0212 1.0291 1.2780∗ 1.0795

36 2 1.2664 1.4650∗ 1.2462 1.3389 1.4520∗ 1.3508

4 1.2798 1.4418∗ 1.3483 1.2810 1.4358∗ 1.3306

6 1.2135 1.3949∗ 1.2337 1.2589 1.4167∗ 1.3051

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample

split point. RRMSPE denotes the mean squared prediction error (RMSPE ) from the bench-

mark random walk (RW) model divided by the RMSPE from each competing model with 

factors. Superscript R and F mean that factors were estimated from real and financial vari-

ables, respectively. RRMSPE statistics that are greater than 1 indicate that the competing

model outperforms the benchmark RW model. ∗ denotes the cases that the competing model
outperforms the benchmark AR model as well as the RW model.
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Table 5. PPP Based Models for the Real Exchange Rate

American Reference Korean Reference

 #Factors ∆f

 ∆f


 ∆f


 ∆f




1 1 1.0061 1.0057 0.9678 0.9670

2 0.9905 0.9866 0.9639 0.9710

3 0.9831 0.9697 0.9566 0.9636

12 1 1.2381∗ 1.2372 1.2422∗ 1.2441∗

2 1.1760 1.2265 1.2108 1.2153

3 1.1868 1.1836 1.0970 1.1617

36 1 1.3415 1.3364 1.4172∗ 1.4151∗

2 1.3406 1.3401 1.3710 1.2233

3 1.3167 1.3140 1.0971 1.2321

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample

split point. RRMSPE denotes the mean squared prediction error (RMSPE ) from the benchmark

random walk (RW) model divided by the RMSPE from each competing model with  factors.

RRMSPE statistics that are greater than 1 indicate that the competing model outperforms

the benchmark RW model. ∗denotes the cases that the competing model outperforms the
benchmark AR model as well as the RW model. ∆

()
 denotes PLS (or PC) factors

based on PPP.
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Table 6. UIP Based Models for the Nominal Exchange Rate Returns

American Factors

#Factors ∆f

 ∆f


 ∆f ∆f

1 1.0357∗ 1.0317∗ 1.0371∗ 1.0281∗

2 1.0529∗ 1.0258 1.0455∗ 1.0154

3 1.0261∗ 1.0237 1.0703∗ 1.0158

Korean Factors

#Factors ∆f

 ∆f


 ∆f ∆f

1 1.0161 1.0121 0.9191 0.5361

2 1.0334∗ 1.0264∗ 0.7552 0.5829

3 1.0166 1.0250 0.5044 0.2566

Note: We report the RRMSPE statistics for the one-period ahead forecast employing a rolling

window scheme with a 50% sample split point. RRMSPE denotes the mean squared prediction

error (RMSPE ) from the benchmark random walk (RW) model divided by the RMSPE from

each competing model with  factors. RRMSPE statistics that are greater than 1 indicate that

the competing model outperforms the benchmark RW model. ∗ denotes the cases that the com-
peting model outperforms the benchmark AR model as well as the RW model. ∆

()


denotes PLS (or PC) factors based on the UIP condition, whereas ∆
()
 denotes PLS (or

PC) factors based on data-driven macroeconomic factors for the nominal exchange rate return.
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Table 7. RIRP Based Models for the Real Exchange Rate Return

American Factors

#Factors ∆f

 ∆f


 ∆f ∆f

1 1.0057 1.0066 1.0290∗ 1.0198∗

2 1.0042 0.9882 1.0358∗ 1.0061

3 0.9924 0.9754 1.0598∗ 1.0061

Korean Factors

#Factors ∆f

 ∆f


 ∆f ∆f

1 0.9833 0.9792 0.9191 0.6676

2 0.9742 0.9836 0.7552 0.4295

3 0.9697 0.9631 0.5044 0.2443

Note: We report the RRMSPE statistics for the one-period ahead forecast employing a rolling

window scheme with a 50% sample split point. RRMSPE denotes the mean squared predic-

tion error (RMSPE ) from the benchmark random walk (RW) model divided by the RMSPE

from each competing model with  factors. RRMSPE statistics that are greater than 1 indi-

cate that the competing model outperforms the benchmark RW model. ∗ denotes the cases
that the competing model outperforms the benchmark AR model as well as the RW model.

∆
()
 denotes PLS (or PC) factors based on RIRP, whereas ∆

()
 denotes

PLS (or PC) factors based on data-driven macroeconomic factors for the real exchange rate

return.

29



Figure 1. Cumulative R2Analysis

Note: We regress the real exchange rate on each factor and obtain the 2 statistics. Since we

use orthogonalized factors, we report the cumulative 2 statistics. Dotted lines are for PLS

factors and solid lines are for PC factors.
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Figure 2. Cross-Section Dependence of the Real Exchange Rates realtive to the Dollar

Note: The heat map on the left shows the cross-correlations of the ADF regression residuals

of 36 real exchange rate relative to the U.S. dollar. We report the average cross-correlations of

each real exchange rate in the figure on the right. The country ID is of the same order as in the

heat map on the left. For example, Korea’s ID 13.
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Figure 3. Marginal R2Analysis: Total Factors

American Factor #1

Korean Factor #1

Note: We report the 2 statistics that were obtained by regressing each predictor on the first

common factor estimate. That is, the horizontal axis is the predictor IDs. Solid lines are for

the PC factor, while bar graphs are for the PLS factor.

32



Figure 4. Marginal R2Analysis: Real Activity Factors

American Factor #1

Korean Factor #1

Note: We report the 2 statistics that were obtained by regressing each predictor on the first

common factor estimate. That is, the horizontal axis is the predictor IDs. Solid lines are for

the PC factor, while bar graphs are for the PLS factor.
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Figure 5. Marginal R2Analysis: Nominal/Financial Factors

American Factor #1

Korean Factor #1

Note: We report the 2 statistics that were obtained by regressing each predictor on the first

common factor estimate. That is, the horizontal axis is the predictor IDs. Solid lines are for

the PC factor, while bar graphs are for the PLS factor.
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