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Abstract 

Closed-end fund (CEF) prices often exhibit large and persistent deviations from 
their associated net asset values (NAVs), which is puzzling since CEFs are 
repackaged financial assets and NAVs are publicly observable. We point out that 
such high persistence is mainly observed when linear models are employed, calling 
for nonlinear models to understand this so-called CEF discount puzzle. Applying 
the RALS-LM framework that allows for multiple endogenously identified trend-
breaks for 31 CEF discount data, we show that CEF prices tend to fluctuate around 
time-varying time trends, which can be consistent with a regime switching model. 
We also demonstrate that utilizing non-normal errors through moment conditions 
enhances the efficiency at the margin. Nonlinearity with level shifts only fails to 
explain the observed persistence of CEF discounts. 
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1 Introduction 

 

Fama (1970), in his influential survey article, suggests a market to be informationally efficient if 

the prices in the market fully reflect all available information that is relevant to their fundamental 

values. For example, stock prices should equal the present value of rationally expected future cash 

flows such as dividend payments. Although the efficient market hypothesis (EMH) provides an 

elegant and intuitive framework for asset pricing models, it is often a challenge to identify what 

fundamental variables drive and move the asset prices.  

Campbell and Shiller (1988a, 1988b), Chen and Zhao (2009), and Chen, Da, and Zhao 

(2013) evaluated the empirical relevance of the present value model of stock prices. Specifically, 

Chen and Zhao (2009) and Chen et al. (2013) highlighted the important role of cash flow 

components of stock prices, separated from discount rate news that is more difficult to quantify. 

Roll (1988) and Morck, Yeung, and Yu (2000) decomposed stock returns into firm-specific news 

and market-wide news, and pointed out that stock prices often do not reflect individual firm-

specific news relative to common market news.1 More recently, Brogaard, Nguyen, Putnins, and 

Wu (2022) reported similar evidence that over 30% of stock return variations can be attributed to 

noise, while firm-specific information plays a much weaker role. On the other hand, Bai, 

Philippon, and Savov (2016) and Farboodi, Matray, Veldkamp, and Venkateswaran (2022) pointed 

out some, although limited, improvements in price informativeness in large and growth stocks. 

Unlike most other financial assets, closed-end funds (CEFs) provide a straightforward and 

intriguing case in the price-fundamentals debate, because CEFs are in essence merely repackaged 

financial assets. One can identify the fundamental value of a CEF share price with its net asset 

value (NAV), which is the market value of the fund’s portfolio divided by the number of shares. 

Since NAVs are publicly observable without delay, NAV allows for a direct and unambiguous 

inference regarding the intrinsic valuation of the fund. In the absence of substantial transaction 

costs, the CEF price should approximate its NAV, hence, deviations of CEF fund price from NAV 

should be short-lived.2 

 
1 For instance, weak protection of private property rights may make informed trading more difficult. 
2 Malkiel (1977, 1995), Thompson (1978) and Pontiff (1995) argue that if investors buy high discount shares and short 
sale low discount share, discount-based trading strategies may be profitable. 
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Yet it is well-known that CEFs normally trade at a discount, sometimes at a premium, to 

their NAV, and we often observe large and persistent deviations of CEF prices from their 

associated NAVs, presenting a challenge to conventional models of asset pricing.3 See, among 

others, Lee, Shleifer, and Thaler (1990, 1991), Ahmed, Koppl, Rosser, and White (1997), Gemmill 

and Thomas (2002), Hughen and Wohar (2006), and Berk and Stanton (2007).4 

Many researchers put forward theoretical hypotheses for such puzzling phenomena, also 

known as the CEF Puzzle, such as investor sentiment (De Long, Shleifer, Summers, and 

Waldmann, 1990; Lee et al., 1991; Chopra, Lee, Shleifer, and Thaler, 1993; Anderson, Beard, 

Kim, and Stern, 2013); arbitrage costs (Pontiff, 1996; Gemmill and Thomas, 2002); accumulated 

tax liabilty effects (Malkiel, 1995; Day, Li, and Xu, 2011); the structure of management fees and 

compensation (Ross, 2002; Berk and Stanton, 2007); and asset price bubbles (Jarrow and Protter, 

2019).  

This paper revisits the CEF Puzzle by employing an econometric model framework that 

allows multiple trend-breaks at unknown dates. We further utilize moment conditions to enhance 

the efficiency of estimations when the error term obeys a non-normal distribution. In what follows, 

we demonstrate that prolonged deviations of the fund price from its fundamentals are mainly 

observed when linear models are employed, even though these discounts often exhibit multiple 

long swings over time.  

Long swings can be associated with a sequence of segmented time trends that are difficult 

to distinguish from a directionless drift of a random walk process. Since the seminal work of 

Nelson and Plosser (1982), many research works have been carried out with an assumption that 

macroeconomic time series contain a unit root. However, an array of researchers suggested that 

those series are better characterized by trend break models that allow structural breaks in time 

trend. See, among others, Perron (1989, 1997), Zivot and Andrews (1992), and Hsu and Kuan 

(2001). 

 
3 Abraham, Elan, and Marcus (1993) find that bond CEFs exhibit premium trades whereas equity CEFs are usually 
trade at a discount. Anderson, Beard, Kim, and Stern (2016) also point out different short-run pricing behavior of 
stock and bond funds. CEF’s initial public offerings (IPO) are usually at a premium and a study by Hanley, Lee, and 
Seguin (1996) explain this as brokers choice of marketing such funds to less informed traders. 
4 Using hand-collected data, Bradley, Briav, Goldstein, and Jian (2010) introduce the possibility that activist arbitrages 
may reduce fund discounts. Open-ending the target CEF can force the managers to take corrective actions, because 
the price of the fund's shares will be forced to converge to its NAV. 
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We also note that such trend break models can be motivated by a regime switching model 

framework. In closely related work, Engel and Hamilton (1990) and Kaminsky (1993) employ 

Hamilton’s (1989) framework for the dollar exchange rate that may be consistent with a sequence 

of segmented time trends. They show that such models can generate long swings that are often 

observed in the exchange rate data when the regimes have different signs and the transition 

probability matrix is close to be reducible.5  Although we do not employ regime switching models 

in this paper, our empirical model with trend breaks at endogenously chosen dates is consistent 

with such model specifications. 

Recognizing that the CEF puzzle is often observed under the linear model framework, we 

investigate the role of nonlinear specifications to understand such highly persistent deviations of 

the CEF price from its fundamentals. For this purpose, we apply the residual augmented least 

squares (RALS) Lagrange multiplier (RALS-LM) unit root test framework for CEF discounts, 

which yields the efficiency gain by utilizing moment conditions when the error terms obey a non-

normal distribution. Being motivated by persistent dynamics of CEF discounts that exhibit long 

swings, we allow endogenously identified multiple trend-breaks at unknown dates following the 

approach of Meng, Lee, and Payne (2017).  

 By implementing the nonlinear (trend breaks) RALS-LM test for 31 monthly frequency 

CEF discount data from January 1999 to April 2018, we obtained strong empirical evidence in 

favor of nonlinear stationarity around time-varying trends, which may help explain long-swing 

dynamics of CEF discounts. The RALS approach yields robust and sizable power gains by utilizing 

moment conditions embodied in non-normal errors. Allowing multiple trend breaks greatly 

enhances the efficiency of the test, while the efficiency gains from allowing level shifts only are 

negligible. 

Organization of the paper is as follows. Section 2 introduces the data, then demonstrates 

the non-normal nature and high degree persistence of CEF discounts. Section 3 carefully describes 

the methodology used in the study. In Section 4, we report and discuss our major findings. Section 

5 concludes. 

 

 
5 For example, consider a data generating process (DGP) with two regimes. If the mean changes the sign across the 
regimes and if the diagonal elements of the transition matrix are close to one, such a DGP  is likely to generate 
dynamics with long swings. 
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2 Stochastic Properties of Closed-End Fund Discounts 

 

2.1 Data Descriptions and Summary Statistics 

 

We obtained 31 daily frequency closed-end fund (CEF) prices and their net asset value (NAV) 

series from the Closed-End Fund Center (cefa.com) and Morningstar (morningstar.com). We 

transformed the daily frequency data to monthly data by taking the end of the month observations 

to reduce noise in the data. Observations span from January 1999 through April 2018. Discounts 

are constructed by taking the log difference of the price from NAV.6 

Our data includes CEF discounts of 14 core stock funds, 6 corporate debt funds, and 11 

general bond funds. Bond funds are selected from the Closed-End Fund Association’s General 

Bond and Corporate Debt BBB Rated Funds categories, while stock funds are selected from the 

Core Funds category. We selected the funds with assets that exceed $50 million (US) as of May 

8, 2018.7  See Table 1 for the complete list of these mutual funds.  

 

Table 1 around here 

 

Figure 1 reports nine CEF discount graphs, three from each of the three categories. As 

mentioned before, long swings are observed in most discounts which imply the existence of 

multiple trend-breaks in the data generating process (DGP). For example, ADX exhibits roughly 

two swings, including the longer one that is bottoming around 2001, accompanied by a shorter 

swing in 2010’s. MGF exhibits a downward time trend until around 2010 followed by an upward 

trend since then. See Appendix C for the complete set of figures with estimated time trends that 

will be explained in what follows. 

Recall that such long swings can be associated with a sequence of segmented time trends 

that is difficult to distinguish from directionless drift of a random walk process. See Engel and 

Hamilton (1990) and Kaminsky (1993) for related discussion on the dollar exchange rate dynamics 

 
6 That is, positive (negative) values imply the fund is traded at a discount (premium). 
7 For more information on these Lipper classifications, see https://www.cefa.com.    



6 

 

using a regime switching model framework that can motivate our nonlinear trend break model in 

this paper. 

 

Figure 1 around here 

 

 Table 2 presents summary statistics for these 31 CEF discounts. We first note that shares 

of most mutual funds are traded at a discount with exceptions of 7 out of 31 mutual funds, ranging 

from 14.99% average discount (ADX) to -17.23% average premium (CET). The skewness 

estimates don’t exhibit any tendency, showing positively skewed distributions roughly as often as 

negatively skewed distributions. However, we observe leptokurtic distributions from all discounts 

that have kurtosis of 3 or higher, which implies a fat-tailed distribution. The Jarque-Bera test 

statistic (Jarque and Bera, 1980) implies strong evidence against the normal distribution based on 

the critical values from Deb and Sefton (1996).8  

 

Table 2 around here 

 

To help visualize the non-normal nature of the distribution of CEF discounts, Figure 2 

presents kernel density estimates (solid lines) of 9 discounts along with their associated normal 

density function estimates (dashed lines), based on the estimated mean and standard deviation of 

the discounts. 9,10  Clearly, estimated kernel densities confirm the summary statistics in Table 2. 

They overall show fat-tail leptokurtic distributions. GAM and DUC even exhibit a bimodal 

distribution. That is, we observe strong evidence in favor of non-normal distributions in the CEF 

discounts, which provides solid justification for using the RALS-LM model specification in our 

paper. 

 

Figure 2 around here 

 

2.2 Persistence in CEF Discounts 

 
8 The asymptotic critical values suggested by Jarque and Bera (1987) are known to have a size distortion problem.  
9 We employed the Epanechnikov kernel to estimate the kernel density function. 
10 Recall that the first and second moments are sufficient statistics for the normal distribution. 
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Let 𝑑𝑐௜,௧ be the discount of a mutual fund 𝑖 as a percent (%) deviation of the share price (𝑃௜,௧) from 

its net asset value (𝑁𝐴𝑉௜,௧ ), that is, 𝑑𝑐௜,௧ ൌ ሺln𝑁𝐴𝑉௜,௧ െ ln𝑃௜,௧ሻ ൈ 100 . Note that a positive 

(negative) value implies that the fund is traded at a discount (premium).  

Consider the following linear Augmented Dickey-Fuller (ADF) regression model for the 

discount with an intercept.  

 

𝑑𝑐௜,௧ ൌ 𝑐௜ ൅ 𝛼௜𝑑𝑐௜,௧ିଵ ൅෍𝛽௜,௝

௞

௝ୀଵ

∆𝑑𝑐௜,௧ି௝ ൅ 𝜀௜,௧ 

 

It is well-known that the ordinary least squares (OLS) estimator of the persistence parameter 𝛼௜ is 

biased.11 Thus, we obtain the median unbiased estimate for the persistence parameter for each 𝑑𝑐௜,௧ 

via the grid bootstrap method (Hansen, 1999) as follows. 

We implemented 10,000 nonparametric bootstrap simulations at each of 30 fine grid points, 

𝛼௜,௝ ∈ ൛𝛼௜,ଵ,𝛼௜,ଶ, … ,𝛼௜,ଷ଴ൟ , in the vicinity of 𝛼ො௜,ை௅ௌ , ሾ𝛼ො௜,ை௅ௌ േ 4𝑠𝑒ሺ𝛼ො௜,ை௅ௌሻሿ , to generate the 𝑝௧௛ 

quantile function estimates with T observations, 𝑞ො்,௣
∗ ൫𝛼௜,௝ ,𝜑ሺ𝛼௜,௝ሻ൯, where 𝜑 denotes nuisance 

parameters such as 𝛽௜,௝. We obtain the median unbiased estimate 𝛼ො௜,ெ௎ா by matching the grid-t 

statistics, 𝑡 ൌ ሺ𝛼ො௜,ை௅ௌ െ 𝛼௜,௝ሻ/𝑠𝑒ሺ𝛼ො௜,ை௅ௌሻ, with 𝑞ො்,଴.ହ
∗ ൫𝛼௜,௝ ,𝜑ሺ𝛼௜,௝ሻ൯. The 95% confidence bands are 

similarly constructed utilizing 𝑞ො்,଴.଴ଶହ
∗ ൫𝛼௜,௝ ,𝜑ሺ𝛼௜,௝ሻ൯ and 𝑞ො்,଴.ଽ଻ହ

∗ ൫𝛼௜,௝ ,𝜑ሺ𝛼௜,௝ሻ൯.  

In Table 3, we report 𝛼ො௜,ெ௎ா  and its associated 95% confidence band in addition to its 

implied half-life (HL) estimates.12 𝛼ො௜,ெ௎ா point estimates are overall close to unity, ranging from 

0.857 (INSI) to 1.001 (RVT), implying highly persistent dynamics of CEF discounts. Their 

associated half-life point estimates range from 4.49 months (INSI) to infinity (RVT). The median 

and the average half-life point estimates were 8.10 and 13.70 months, implying extremely long 

 
11 There exist both the median and the mean bias in the OLS estimator for the persistence parameter in the presence 
of deterministic terms. See Andrews (1993), Andrews and Chen (1994), and Hansen (1999) for median unbiased 
estimators and Kendall (1954), Shaman and Stine (1988), So and Shin (1999) for mean unbiased estimators. Mean 
unbiased estimates are quantitatively similar to the median unbiased estimates, although the confidence intervals tend 
to be finite more often. 
12 The half-life is defined as the time required for a deviation to half-way adjust to its long-run equilibrium. Half-lives 
are obtained by lnሺ0.5ሻ /ln ሺ𝛼ොሻ assuming that deviations decay at a constant rate.  
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deviations of prices from their fundamentals. It should be noted that we obtain finite confidence 

bands only for 18 CEF discounts after correcting for median bias.13  

 

Table 3 around here 

 

3 The Econometric Model: Nonlinear RALS-LM Models 

 

We investigate the observed high persistence of the closed-end fund (CEF) discounts by employing 

a RALS-LM model framework that allows not only level shifts (LS) but also trend breaks (TB) in 

the data generating process of the CEF discounts on endogenously identified structural break dates. 

Furthermore, this framework enhances the power by utilizing moment conditions based on non-

normal errors.  

We employ the following two-step procedure. We first estimate break-related parameters 

using the maximum F test (max F) proposed by Lee, Strazicich, and Meng (2012). Given the 

estimated number and the location of breaks, the second step implements the RALS-LM unit root 

test. Dropping the subscript i for simplicity, consider the following data generating process (DGP) 

for 𝑑𝑐௧. 

 

 𝑑𝑐௧ ൌ 𝜹ᇱ𝒅௧ ൅ 𝜀௧ , (1) 

 

where 𝜀௧ denotes potentially serially correlated errors. For now, denote 𝑇஻௜ the known location of 

the ith structural break (𝑖 ൌ 1, 2, … ,𝑅), while 𝒅௧, the vector of exogenous deterministic variables, 

is defined as follows. 

 

(LS) 𝒅௧ ൌ ሾ1, 𝑡,𝑑ଵ௧ , … ,𝑑ோ௧ሿᇱ, or 

(TB) 𝒅௧ ൌ ሾ1, 𝑡,𝑑ଵ௧ , … ,𝑑ோ௧ ,𝑑𝑡ଵ௧ , … ,𝑑𝑡ோ௧ሿᇱ, 

where 

 
13 We also implement panel estimations for the persistence parameters using a fixed effect model by applying the grid 
bootstrap approach for the data after removing the fixed effect intercept. Results yielded a finite confidence band for 
the half-life, however, the implied half-life point estimate was over 137 months, confirming a substantial degree of 
persistence of the CEF discounts. 
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𝑑௜௧   ൌ ቄ
1,
0, 

 𝑡 ൒ 𝑇஻௜ ൅ 1
 otherwise   

 

𝑑𝑡௜௧ ൌ ൜𝑡 െ 𝑇஻௜
0

 
, 𝑡 ൒ 𝑇஻௜ ൅ 1
, otherwise   

 

 

Based on the LM (score) procedure suggested by Schmidt and Phillips (1992), one can test 

the null hypothesis of the unit root using the t-statistics on 𝜙 ൌ 0 from the following regression. 

 

 ∆𝑑𝑐௧ ൌ 𝜹′∆𝒅௧ ൅ 𝜙𝑑𝑐෪௧ିଵ ൅ ∑ 𝜃௝
௞
௝ୀଵ ∆𝑑𝑐෪௧ି௝ ൅ 𝜐௧, (2)                         

 

where 𝑑𝑐෪௧ ൌ 𝑑𝑐௧ െ 𝛼෤ െ 𝜹෩′𝒅௧  is the LM detrended series (residuals) of 𝑑𝑐௧ . That is, 𝜹෩  is the 

coefficient vector that is estimated by a separate regression, ∆𝑑𝑐௧ ൌ 𝜹′∆𝒅௧ ൅ 𝜈௧. 𝛼෤ is the restricted 

MLE of 𝛼 which is given by 𝛼෤ ൌ  𝑑𝑐ଵ െ 𝜹෩′𝒅ଵ.14  Note also that (2) includes ∆𝑑𝑐෪௧ି௝, 𝑗 ൌ  1, … ,𝑘, 

to remove any existing serial correlations in the error term. The t-statistic for 𝜙 ൌ 0 from (2) is 

denoted by 𝜏௅ெ. 

As shown by Amsler and Lee (1995) and Lee and Strazicich (2003), the asymptotic 

distribution of 𝜏௅ெ is invariant to the location and the magnitude of breaks when the model allows 

for breaks only in the level (LS). It should be noted, however, that the asymptotic distribution of 

𝜏௅ெ depends on the location of breaks in the model with trend breaks (TB). To control for such 

dependency on the nuisance parameter, Lee et al. (2012) suggest employing the transformed series 

𝑑𝑐෪௧
∗ for TB model as follows by dividing 𝑑𝑐෪௧ by the fraction of sub-samples in each regime:   𝜆ଵ

∗ ൌ

𝑇஻ଵ/𝑇; 𝜆௜
∗ ൌ ൫𝑇஻௜ െ 𝑇஻ሺ௜ିଵሻ൯/𝑇, 𝑖 ൌ 2, … ,𝑅; 𝜆ோାଵ

∗ ൌ ሺ𝑇 െ 𝑇஻ோሻ/𝑇.15  

 

 𝑑𝑐෪௧
∗ ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

ௗ௖෪೟

ఒభ
∗    ,  for 𝑡 ൑ 𝑇஻ଵ           

  ௗ௖
෪೟

ఒమ
∗    ,  for 𝑇஻ଵ ൏ 𝑡 ൑ 𝑇஻ଶ
⋮
ௗ௖෪೟

ఒೃశభ
∗

   ,  for 𝑇஻ோ ൏ 𝑡 ൑ 𝑇   

   (3) 

 

 
14 𝒅௧ ൌ ሾ1, 𝑡ሿ′ that allows no break gives the LM statistic of Schmidt and Phillips (1992). 
15 See Proposition 1 in Lee et al. (2012). 
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Replacing 𝑑𝑐෪௧ିଵ in the testing regression (2) with 𝑑𝑐෪௧ିଵ
∗ , we obtain the following. 

 

 ∆𝑑𝑐௧ ൌ 𝜹′∆𝒅௧ ൅ 𝜙𝑑𝑐෪௧ିଵ
∗ ൅ ∑ 𝜃௝

௞
௝ୀଵ ∆𝑑𝑐෪௧ି௝ ൅ 𝑒௧  (4) 

 

Let 𝜏௅ெ
∗  be the t-statistic for 𝜙 ൌ 0  from (4). As Lee et al. (2012) indicated, under this 

transformation, the asymptotic distribution of 𝜏௅ெ
∗  depends on the number of trend-breaks instead 

of the location of breaks. That is, one can use the critical values of 𝜏௅ெ
∗  that correspond to the 

number of breaks instead of simulated critical values at the estimated optimal break points.16 

We now turn back to the first stage of our testing procedure to endogenously identify the 

break parameters. Following Lee et al. (2012), we employ an F-statistic approach to identify the 

location of breaks along with the optimal number of lags as follows.  

 

 𝐹 ൌ ሺௌௌோబିௌௌோభሺఒሻሻ/௠

ௌௌோభሺఒሻ/ሺ்ି௤ሻ
 , (5) 

 

where 𝑚 is the number of restrictions (i.e., number of level shifts in the LS model and number of 

trend-breaks in the TB model) and 𝑞 denotes the number of regressors in (4). 𝑆𝑆𝑅ଵ is the sum of 

the squared residuals from (4), while 𝑆𝑆𝑅଴ is the sum of the squared residuals from the LM unit 

root test without break (Schmidt and Phillips, 1992) with 𝒅௧ ൌ ሾ1, 𝑡ሿ′ in (2).  

More specifically, we set a maximum number of breaks 𝑅ത and determine the number of lag 

augmentations using the general-to-specific procedure. Via a grid search, we identify the location 

of breaks where the F-statistic is maximized, simultaneously considering the estimated optimal 

lags and the corresponding number of breaks. Next, one can determine the number of structural 

changes by examining the significance of dummy coefficients with the usual t-test. If one or more 

number of the break dummies are insignificant based on the standard t-test, one can move to the 

first step with the break number of 𝑅ത െ 1 . Once the number and the location of breaks are 

determined, one can implement the unit root test based on equation (4).  

Finally, we employ the RALS (Im and Schmidt, 2008) approach-based procedure of Meng 

et al. (2017) which extended the RALS unit root test of Meng, Im, Lee, and Tieslau (2014) by 

 
16 The critical values of the transformed LM tests with trend shifts are presented in Im, Lee, and Tieslau (2010) for 
𝑅 ൌ 1, 2, 3. 
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allowing for structural breaks. Meng et al. (2017) showed that the power of the RALS unit root 

procedure is superior to that of the two step-based LM tests in (4) when the error term follows a 

non-normal distribution. The RALS unit root test is implemented via the following two-step 

procedure. 

First, we obtain the least square residual �̂�௧ by estimating equation (4) and construct 𝒘ෝ௧ 

given by, 

 

 𝒘ෝ௧ ൌ 𝒉ሺ�̂�௧ሻ െ  ଵ
்
∑ 𝒉ሺ�̂�௦ሻ்
௦ୀଵ െ �̂�௧ ⋅

ଵ

்
∑ 𝒉′ሺ�̂�௦ሻ்
௦ୀଵ ,  (6) 

 

where 𝒉ሺ⋅ሻ is a 𝐽 ൈ 1 known differentiable function. And For the RALS(2&3) test, define 𝒉ሺ�̂�௧ሻ as 

a vector of the function of the second and the third moments, 𝒉ሺ�̂�௧ሻ ൌ ሾ�̂�௧ଶ, �̂�௧
ଷሿ′, which results in 

the following.  

   

 𝒘ෝ௧ ൌ ൤
�̂�௧ଶ െ 𝑚ෝଶ

�̂�௧
ଷ െ 𝑚ෝଷ െ 3𝑚ෝଶ�̂�௧

൨, (7) 

 

where 𝑚ෝ௝ denotes the jth sample moment of its corresponding population moment, 𝑚௝ ൌ 𝐸ሺ𝑒௧
௝ሻ. 

The first term in (7) exploits the condition of no heteroscedasticity while the second term improves 

the efficiency unless the redundancy condition is met. It turns out that augmenting equation (4) 

with 𝒘ෝ௧ in (7) increases efficiency and results in higher power in the RALS-LM tests relative to 

the LM tests in (4) unless the error term 𝑒௧ follows a normal distribution.17  

The RALS(tν) test is based on an assumption that the error term obeys a t-distribution with 

ν degrees of freedom. For this, we choose a scalar differentiable function ℎሺ�̂�௧ሻ ൌ
ሺఔାଵሻ௘̂೟
ఔା௘̂೟

మ  that 

yields the following.18  

 

 𝑤ෝ௧ ൌ
ሺఔାଵሻ௘̂೟
ఔା௘̂೟

మ െ ଵ

்
∑ ሺఔାଵሻ௘̂ೞ

ఔା௘̂ೞ
మ

்
௦ୀଵ െ �̂�௧ ⋅

ଵ

்
∑ ሺఔାଵሻሺఔି௘̂ೞమሻ

ሺఔା௘̂ೞ
మሻమ 

்
௦ୀଵ   (8) 

 
17 It is known that the normal distribution of the error term satisfies the redundancy condition 𝑚௝ାଵ ൌ 𝑗𝜎ଶ𝑚௝ିଵ, 𝑗 ൌ 
2, 3, where 𝑚௝ is the 𝑗௧௛ central moment. See Breusch, Qian, Schmidt, and Wyhowski (1999) for details. Specifically, 
the normal distribution is the only distribution that satisfies 𝑚ସ ൌ 3𝜎ସ. 
18 Meng et al. (2014) provide a robustness check with alternative degrees of freedom. 
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We employ the t-distribution with ν degrees of freedom to mimic fat-tailed distributions that are 

often observed in financial market data such as the mutual fund discount data used in this paper, 

as shown earlier. Meng et al. (2014) demonstrated that the additional term 𝑤ෝ௧ results in efficiency 

gains under fat-tailed types of distributions. 

Unlike the RALS(2&3) approach, the efficiency gain of using the RALS(tν) procedure does 

not require any redundancy condition. Note that ℎሺ�̂�௧ሻ ൌ
ሺఔାଵሻ௘̂೟
ఔା௘̂೟

మ  is derived from the score vector 

of the MLE with an assumption that observations are randomly drawn from the generalized t-

distribution (see Appendix A for its derivation). That is, we employ such score function as the 

moment condition to enhance the efficiency of the RALS-LM test in the spirit of the GMM 

estimator. 

Finally, the RALS-LM test statistic with trend-breaks is obtained from the following 

regression by augmenting equation (4) with the constructed variable 𝒘ෝ௧ in (7) or (8). 

 

 ∆𝑑𝑐௧ ൌ 𝜹′∆𝒅௧ ൅ 𝜙𝑑𝑐෪௧ିଵ
∗ ൅ 𝜸′𝒘ෝ௧ ൅ ∑ 𝜃௝

௞
௝ୀଵ ∆𝑑𝑐෪௧ି௝ ൅ 𝑢௧. (9) 

 

The null hypothesis of the unit root is tested using the t-statistics on 𝜙 ൌ 0 from (9). When the 

distribution of the error term follows a non-normal distribution, the added term  𝒘ෝ௧ works as the 

stationary covariate, similar as in Hansen (1995), and the error variance in the RALS-LM tests 

from (9) becomes smaller than that in equation (4). Accordingly, the RALS tests become more 

efficient and achieve higher power.  

We denote the test statistic from the RALS-LM test with trend-shifts as 𝜏ோ஺௅ௌି௅ெ
∗ . As 

shown by Meng et al. (2017), the asymptotic distribution of 𝜏ோ஺௅ௌି௅ெ
∗  depends on 𝜌ଶ which can 

be estimated as, 

 

 𝜌ොଶ ൌ ఙෝೃ
మ

ఙෝమ
,  (10) 

 

where 𝜎ොோ
ଶ and 𝜎ොଶ are the estimated variances of the regression in (9) and (4), respectively. With 

the transformation, the asymptotic distribution of the RALS-LM test statistic with trend-breaks no 
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longer depends on the break location parameters. The RALS-LM tests with trend-breaks can be 

implemented using the appropriate critical values reported in Table 1 of Meng et al. (2017).19  

 

4 The Empirics 

 

4.1 Power Gains from Utilizing Non-Normal Errors: Linear RALS Unit Root Test 

 

We first report benchmark linear unit root test results with no structural break in order to 

investigate the power gains from non-normal errors only. For this purpose, we employ the 

following RALS regression equation with a time-invariant intercept as in Meng et al. (2014).  

 

∆𝑑𝑐௧ ൌ 𝛼 ൅ 𝜙𝑑𝑐௧ିଵ ൅ 𝜸′𝒘ෝ௧ ൅ ∑ 𝜃௝
௞
௝ୀଵ ∆𝑑𝑐௧ି௝ ൅ 𝑢௧    (11) 

 

which is equivalent to the Augmented Dickey-Fuller (ADF) regression equation in the absence of 

𝒘ෝ௧ term (𝜸 ൌ 𝟎). Note that this benchmark procedure requires neither any transformations nor LM 

detrending for 𝑑𝑐௧. 

We chose the optimal number of lags based on the general-to-specific rule with a maximum 

of 10 lags. The asymptotic critical values for the RALS tests depend on 𝜌ොଶ ൌ 𝜎ොோ஺௅ௌ
ଶ /𝜎ො஺஽ி

ଶ  from 

(11), which is similarly defined as the ratio of the error variance estimates in (10). The critical 

values were obtained from Hansen (1995). Test results are reported in Table 4. 

 
19 Due to the invariance property of the level shifts (LS) model, indicated in Amsler and Lee (1995) and Lee and 
Starazicich (2003), the critical value of the LM unit root tests with the LS model is the same as that of Schmidt and 
Phillips (1992). Therefore, as Lemma 1 of Meng et al. (2014) shows, the limiting distribution of the RALS-LM tests 
with level shifts is as follows.  

𝜏ோ஺௅ௌି௅ெ ൌ 𝜌𝜏௅ெ ൅ ඥ1 െ 𝜌ଶ𝑍                                                           (FN.1) 
 
where 𝜏ோ஺௅ௌି௅ெ is the t-statistic for 𝜙 ൌ 0 from the RALS regression (9), 𝜏௅ெ is the t-statistic for 𝜙 ൌ 0 in (2) while 
assuming 𝒅௧ ൌ ሾ1, 𝑡ሿ′ (Schmidt and Phillips, 1992), and 𝜌 denotes the weighting parameter. Note that the invariance 
property allows the RALS-LM unit root tests with level shifts to be implemented without the transformation procedure 
in (3). In addition to this, the limiting distribution of (FN.1) is the same as that of the RALS-LM tests without breaks. 
This implies that the same set of critical values can be used for the RALS-LM unit root test for both the no-break and 
level shift models regardless of the number of shifts. Therefore, to implement both tests, one can obtain the estimated 
error variance of the RALS tests (𝜎ොோ

ଶ) from (9) without a transformation and 𝜎ොଶ from equation (2) while assuming 
𝒅௧ ൌ ሾ1, 𝑡ሿ′ and 𝒅௧ ൌ ሾ1, 𝑡,𝐷ଵ௧ , … ,𝐷ோ௧ሿ′ for the no-break model and for the level shifts model, respectively, and make 
a decision using the same set of critical values reported in Table 11.1 of Meng et al. (2014). 
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The ADF test rejects the null hypothesis of nonstationarity for 12 out of 31 mutual fund 

discounts at the 5% significance level (38.7%), while 4 more cases are rejected at the 10% level. 

The RALS(2&3) test rejects the null of nonstationarity for 18 out of 31 cases at the 5% significance 

level (61.3%). The RALS(t5) test rejects the null for 16 and 18 mutual fund discounts at the 5% 

and the 10% significant levels, respectively, for all degrees of freedom we considered. See Table 

B1 for alternative degrees of freedom ሺ𝜈ሻ in Appendix B.  

These findings imply considerable power gains by utilizing distribution information of 

non-normal errors in the mutual fund discounts. The RALS test rejects the null hypothesis for up 

to 6 more cases at the 5% significance level in comparison with the ADF test results, although 

both tests reject roughly the same number of cases at the 10% level. Put it differently, adding a 

distributional assumption seems to strengthen the power at the margin. In what follows, we 

investigate the possibility of adding further power gains by allowing structural breaks at unknown 

dates.   

 

Table 4 around here 

 

4.2 Power Gains from Time-Dependent Nonlinearity 

 

This section reports the RALS-LM unit root test results allowing both the level shifts and the trend-

breaks at unknown dates via the procedures explained in Section 3. 

Tables B2 and B3 in Appendix B provide the LM and RALS-LM unit root test results 

allowing level shifts but not trend-breaks. We note that allowing level-shifts only fails to generate 

any power gains even when additional distributional assumptions are added via RALS procedures. 

As can be seen in Table B2, the LM test with one identified structural break in level rejects the 

null of nonstationarity only for 10 mutual fund discounts at the 10% significance level. The RALS-

LM(2&3) and RALS-LM(tν) performed similarly. Allowing for two level-shifts doesn’t change 

the performance of the test, rejecting up to 11 discounts. See Table B3.  

These findings imply a possible misspecification problem in a model with time-varying 

intercepts. Given such findings, we switch our attention to the RALS-LM unit root test that allows 

trend-breaks. As seen in Figure 1, there exists strong visual evidence of time-varying time trends 

in our mutual fund discount data. To statistically evaluate such a possibility, we implement the 
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RALS-LM test based on equations (7), (8), and (9) that allows up to two trend breaks at unknown 

dates. We report substantial empirical evidence in favor of nonlinear stationarity in Tables 5, 6, 

and 7. 

Table 5 reports results from benchmark models with 𝒅௧ ൌ ሾ1, 𝑡ሿ′ but without allowing any 

structural break in time trend. The LM test by Schmidt and Phillips (1992) rejects the null of 

nonstationarity for 10 discounts at the 10% significance level, while adding distributional 

assumptions via the RALS principle improves the power by rejecting additional 2 or 4 more cases.  

According to Figure 1, the visual inspections in favor of nonlinear stationarity and the 

results in Table 5 seem to provide strong evidence in favor of the initial findings of Perron (1989), 

who noted that unit root tests lose power if existing breaks are ignored. Lee and Hur (2021) indicate 

that the power of the test decreases when the RALS tests do not take into account the on-going 

structural breaks in the data. In this regard, we believe that extending the RALS unit root tests to 

explicitly consider ongoing structural breaks in the testing regression would be a meaningful 

contribution in examining the CEF discount data. 

 

Table 5 around here 

 

Indeed, allowing one deterministic trend break yields substantial power gains as can be 

seen in Table 6. The LM test rejects the null hypothesis for 16 mutual fund discounts at the 10% 

significance level. The RALS-LM tests reject the null for up to 19 out of 31 discounts at the 10% 

level. The RALS-LM(t5) test rejects the null for 20 discounts at the 10% level. Comparing these 

findings with the ones in Tables 5, B2, and B3, we see that allowing nonlinearity with a trend-

break yields significant improvement with or without adding information on non-normal errors.  

We further implement our investigation with two trend-breaks. Results are reported in 

Table 7. Note that the LM test rejects the null for 13 additional discounts, that is a total of 29 out 

of 31 discounts. The RALS-LM tests yield similar evidence of nonlinear stationarity by rejecting 

the null for almost all cases no matter what RALS methodologies are used.  

It should be noted that this by no means is the result of allowing additional flexibility in 

modelling the time trend. As one can see in Tables B2 and B3, we obtained roughly the same weak 

evidence of nonlinear stationarity even when two level-shifts were allowed. These findings imply 

an important role of allowing time-varying time trends in the mutual fund discount dynamics over 
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time, which is also consistent with regime switching models that generate long swings in the 

financial data. 

 

Tables 6 and 7 around here 

 

5 Concluding Remarks  

 

The net asset value (NAV) of a closed-end fund (CEF) allows for direct information on the intrinsic 

value of the fund, providing a straightforward case as to the identification of the underlying 

fundamental forces that drive and move the asset prices. Therefore, when informed trading is 

feasible and if the transaction costs are not substantial, deviations of CEF prices from their 

associated NAVs should be short-lived. However, we often observe substantial and highly 

persistent deviations, which is hard to reconcile with regards to the reasonings based on the 

efficient market hypothesis (EMH). This paper presents an alternative empirical framework to 

understand this well-known CEF Puzzle. 

We employ a nonlinear RALS-LM framework for 31 monthly frequency CEF discount 

data from January 1999 to April 2018, allowing multiple trend-breaks at endogenously identified 

dates. We show that introducing nonlinearity via level shifts is not helpful to understand highly 

persistent dynamics of the CEF discount, while trend-breaks are the key to explain persistent 

deviations of CEF prices from their fundamentals. That is, CEF prices seem to fluctuate around 

time-varying trends, generating persistent long-swing dynamics of discounts, which can be 

consistent with regime-switching models with a near reducible transition matrix. Also, our 

empirical findings show that efficiency gains from utilizing moment conditions based on non-

normal errors also arise on the margin.  

The findings presented in this paper provide practically useful information for investment 

strategies, because deviations of CEF prices from their NAVs do not necessarily imply any 

immediate change of course. That is, price reversals are not likely to occur at short investment 

horizons. As is shown in our paper, persistent deviations of CEF prices can be associated with 

long-swings, providing empirical support in favor of momentum investment strategies because 

identified trends are likely to continue. 
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Figure 1. Mutual Fund Discounts 

 

Note: We obtained the data from the Closed-End Fund Center (cefa.com) and Morningstar (morningstar.com). We 
transform the daily frequency data to monthly frequency data by taking end of the period values. The discount is 
defined as a percent (%) deviation of the fund price from its net asset value. The sample period is from January 1999 
to April 2018. See the Appendix for all discount graphs.   
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Figure 2. Kernel Density Estimates of Mutual Fund Discounts 

 
Note: We estimated the Kernel density function of mutual fund discounts assuming an Epanechnikov kernel. Dashed 
lines are the normal density function estimates utilizing the first and second moments of each discount. Kernel density 
estimates of all discounts are available upon request. 
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Table 1. Closed-End Mutual Fund Information 

Categories Fund Name Total Net Assets ($ Mil) 
Core Funds Adams Diversified Equity (ADX) 1,771.6  

Central Securities Corp (CET) 821.4  
Cornerstone Strat Value (CLM) 563.3  
Cornerstone Total Return (CRF) 277.2  
Gabelli Equity Trust (GAB) 2,044.7  
General Amer Investors (GAM) 1,037.1  
Eagle Capital Growth (GRF) 33.3  
Royce Micro-Cap Trust (RMT) 412.1  
Royce Value Trust (RVT) 1,446.2  
Source Capital (SOR) 382.6  
Special Opportunities Fd (SPE) 142.5  
Tri-Continental Corp (TY) 1,609.7  
Sprott Focus Trust (FUND) 220.3  
Liberty All-Star Equity (USA) 1,302.0 

Corp Debt BBB Morg Stan Income Sec (ICB) 168.3  
MFS Govt Markets Inc Tr (MGF) 157.9  
MFS Intermediate Income (MIN) 494.0  
Insight Select Income (INSI) 216.8  
Western Asset Income (PAI) 139.6  
Invesco Bond Fund (VBF) 219.9 

General Bond Duff & Phelps Util&Corp (DUC) 261.5  
J Hancock Investors (JHI) 241.0  
Deutsche Mlti-Mkt Inc Tr (KMM) 203.1  
Deutsche Strat Inc Tr (KST) 55.2  
Barings Corporate Inv (MCI) 303.5  
MFS Charter Income Trust (MCR) 428.8  
MFS Multimkt Inc Tr (MMT) 432.9  
Barings Part Investors (MPV) 145.5  
PCM Fund (PCM) 118.4  
Putnam Mstr Intmdt Incom (PIM) 271.3  
Putnam Premier Income (PPT) 602.1 

Note: We obtained the data from the Closed-End Fund Center (cefa.com) and Morningstar (morningstar.com). Total 
net asset values shown in million dollars are as of May 8, 2018. 
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Table 2. Summary Statistics 

Categories Fund Mean SD Skew Kurt JB 
Core Funds ADX 14.99 2.36 -0.58 6.12 106.62
 CET -17.23 3.73 0.33 5.85 82.32
 CLM 14.65 20.11 -1.70 13.86 1,245.02
 CRF 8.63 40.39 -1.72 21.99 3,583.00
 FUND 9.51 7.51 -0.46 5.42 64.34
 GAB -2.08 7.58 -0.01 4.56 23.44
 GAM 12.93 4.66 0.26 11.45 689.64
 GRF -7.27 10.97 0.43 5.90 88.14
 RMT 10.35 7.18 0.18 4.03 11.48
 RVT 8.50 8.16 0.09 4.01 10.16
 SOR 2.73 10.77 -0.14 4.87 34.28
 SPE -11.53 3.53 0.08 4.62 25.55
 TY 14.84 3.34 0.28 8.47 291.09
 USA 8.77 8.81 0.42 5.97 91.47
Corp Debt BBB ICB 7.09 4.07 -0.32 6.16 99.92
 INSI 8.96 3.72 0.94 7.36 217.11
 MGF 6.70 5.26 0.06 10.24 505.06
 MIN 7.14 4.88 0.63 6.23 115.87
 PAI 5.85 5.12 -0.31 4.71 31.79
 VBF 7.04 5.00 -0.11 4.28 16.19
General Bond DUC 0.99 6.31 -0.29 4.82 35.11
 JHI 3.47 8.21 -0.04 4.12 12.16
 KMM 2.90 8.11 0.33 4.59 28.35
 KST 2.07 9.80 -0.10 7.79 220.92
 MCI -9.94 10.95 0.47 4.19 22.19
 MCR 9.49 3.58 0.05 4.95 36.55
 MMT 9.78 3.68 0.27 4.10 14.44
 MPV -8.02 10.54 -0.39 6.89 151.55
 PCM -5.23 7.16 1.17 6.69 183.56
 PIM 7.44 5.31 0.17 6.20 99.83
 PPT 7.69 5.36 -0.04 8.77 320.59

Note: The discount is defined as a percent (%) deviation of the fund price from its net asset value. The sample period 
is from January 1999 to April 2018. We transform the daily frequency data to monthly frequency data by taking end 
of the period values. JB refers to the normality test statistics by Jarque and Bera (1980, 1987), of which the null 
hypothesis is that the discount is normally distributed. The null hypothesis was rejected for all fund discounts at the 
5% significance level. The critical values were taken from Deb and Sefton (1996) to overcome a size distortion 
problem using an asymptotic chi-square distribution with the two degrees of freedom. 
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Table 3. Persistence Properties of Closed-End Mutual Fund Discounts 

Categories Fund 𝛼ெ௎ா LB UB HL HLB HUB 
Core Funds ADX 0.910 0.835 1.001 7.344 3.840 ∞ 
 CET 0.914 0.833 1.013 7.704 3.792 ∞ 
 CLM 0.947 0.899 1.006 12.732 6.516 ∞ 
 CRF 0.979 0.946 1.012 32.664 12.492 ∞ 
 GAB 0.916 0.857 0.980 7.896 4.488 34.308 
 GAM 0.980 0.915 1.028 34.308 7.800 ∞ 
 GRF 0.955 0.886 1.023 15.060 5.724 ∞ 
 RMT 0.971 0.918 1.019 23.556 8.100 ∞ 
 RVT 1.001 0.950 1.025 ∞ 13.512 ∞ 
 SOR 0.987 0.944 1.019 52.968 12.024 ∞ 
 SPE 0.869 0.789 0.954 4.932 2.928 14.724 
 TY 0.901 0.832 0.981 6.648 3.768 36.132 
 FUND 0.981 0.920 1.026 36.132 8.316 ∞ 
 USA 0.975 0.928 1.017 27.372 9.276 ∞ 
Corp Debt BBB ICB 0.892 0.817 0.976 6.060 3.432 28.536 
 MGF 0.940 0.886 1.008 11.208 5.724 ∞ 
 MIN 0.959 0.906 1.016 16.560 7.020 ∞ 
 INSI 0.857 0.775 0.943 4.488 2.724 11.808 
 PAI 0.859 0.780 0.941 4.560 2.784 11.400 
 VBF 0.917 0.859 0.982 8.004 4.560 38.160 
General Bond DUC 0.925 0.861 1.006 8.892 4.632 ∞ 
 JHI 0.968 0.917 1.016 21.312 8.004 ∞ 
 KMM 0.951 0.891 1.015 13.800 6.000 ∞ 
 KST 0.935 0.885 0.995 10.308 5.676 138.288 
 MCI 0.918 0.844 1.010 8.100 4.092 ∞ 
 MCR 0.900 0.833 0.974 6.576 3.792 26.316 
 MMT 0.900 0.829 0.982 6.576 3.696 38.160 
 MPV 0.890 0.812 0.976 5.952 3.324 28.536 
 PCM 0.916 0.848 0.999 7.896 4.200 692.796 
 PIM 0.921 0.857 1.004 8.424 4.488 ∞ 
 PPT 0.900 0.830 0.980 6.576 3.720 34.308 

Note: (a) 𝛼ெ௎ா denotes the persistence parameter estimate from AR(p) that is corrected for median bias following 
Hansen’s (1999) grid bootstrap approach. We implemented 10,000 bootstrap iterations at 30 fine grid points in the 
viscinity of the OLS estimate, [𝛼ොை௅ௌ െ 4 ൈ 𝑠𝑒,𝛼ොை௅ௌ ൅ 4 ൈ 𝑠𝑒] . The 95% confidence band [LB,UB] is similarly 
constructed. HL denotes the implied half-life estimate in month, and its 95% confidence band is [HLB,HUB]. The 
median and the average HL estimates were 8.10 and 13.70 months, respectively.  
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Table 4. ADF and RALS Unit Root Test Results 

Categories Fund 𝜏஺஽ி 𝜏ோ஺௅ௌሺଶ&ଷሻ 𝜌ොሺଶ&ଷሻ
ଶ  𝜏ோ஺௅ௌሺ௧ఱሻ 𝜌ොሺ௧ఱሻ

ଶ  𝑘෠ 
Core Funds  ADX -2.719* -3.475‡ 0.861 -3.470‡ 0.778 8 

 CET -2.470 -1.854 0.786 -2.080 0.630 5 
 CLM -1.843 -0.629 0.701 -1.768 0.854 10 
 CRF -2.248 -1.115 0.642 -1.888 0.728 0 
 FUND -1.892 -2.259 0.854 -2.596* 0.750 2 
 GAB -3.419† -2.825† 0.858 -3.316† 0.830 0 
 GAM -2.045 -3.845‡ 0.623 -3.286‡ 0.475 9 
 GRF -1.510 -2.747† 0.786 -1.760 0.856 10 
 RMT -1.675 -1.609 0.898 -1.744 0.823 10 
 RVT -1.721 -1.854 0.912 -1.808 0.814 7 
 SOR -1.335 -1.753 0.812 -1.509 0.616 3 
 SPE -3.769‡ -2.995† 0.844 -3.973‡ 0.657 1 
 TY -3.588‡ -3.153† 0.608 -3.746‡ 0.397 6 
 USA -2.104 -1.985 0.742 -1.895 0.510 1 

Corp Debt BBB ICB -3.308† -3.951‡ 0.794 -4.383‡ 0.650 7 
 INSI -3.603‡ -3.836‡ 0.840 -3.821‡ 0.763 5 

 MGF -2.305 -3.159† 0.710 -3.048† 0.623 8 
 MIN -2.290 -0.981 0.843 -0.804 0.799 5 
 PAI -3.377† -2.943† 0.849 -3.305† 0.823 8 
 VBF -3.418† -3.387‡ 0.891 -3.111† 0.842 3 

General Bond DUC -2.990† -1.894 0.854 -0.788 0.754 1 
 JHI -2.254 -2.233 0.925 -2.134 0.875 1 
 KMM -2.760* -3.257† 0.871 -3.248‡ 0.676 7 
 KST -2.530 -2.343 0.727 -2.934† 0.626 10 

 MCI -2.899† -3.535‡ 0.886 -2.827† 0.959 2 
 MCR -3.528‡ -3.253† 0.876 -2.700* 0.826 1 
 MMT -3.362† -3.712‡ 0.906 -3.445‡ 0.843 1 
 MPV -3.352† -4.090‡ 0.782 -2.804† 0.750 8 
 PCM -2.535 -2.855† 0.665 -1.510 0.915 4 
 PIM -2.843* -2.847† 0.760 -3.245‡ 0.586 8 
 PPT -2.719* -2.118 0.816 -1.487 0.674 10 

Note: (a) 𝜏஺஽ி , 𝜏ோ஺௅ௌሺଶ&ଷሻ , and 𝜏ோ஺௅ௌሺ௧ఱሻ  are the test statistics for the ADF, RALS(2&3), and RALS(𝑡ହ ) tests, 
respectively. (b) 𝜌ොሺଶ&ଷሻ

ଶ  and 𝜌ොሺ௧ఱሻ
ଶ  indicate the ratio of the estimated error variances for RALS(2&3) and RALS(𝑡ହ) 

tests, respectively. (c) We chose the optimal number of lags (𝑘෠) based on the general-to-specific rule with a maximum 
10 lags. (d) *, † and ‡ denote a rejection of the null hypothesis of nonstationarity at the 10%, 5% and 1% significance 
level, respectively. (e) The critical values of RALS tests are dependent on 𝜌ොଶ and were obtained from Hansen (1995). 
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Table 5. LM and RALS-LM Test Results with No Trend Break 
 

Categories Fund 𝜏௅ெ 𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ 𝜌ොሺଶ&ଷሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ఱሻ 𝜌ොሺ௧ఱሻ

ଶ  

Core Funds ADX -1.627 -2.481 0.870 -2.127 0.777 
 CET -2.714 -1.953 0.795 -2.217 0.635 
 CLM -1.492 -0.207 0.711 -1.270 0.880 
 CRF -2.157 -1.021 0.644 -1.742 0.577 
 FUND -1.535 -1.642 0.869 -1.673 0.767 
 GAB -3.563† -2.987† 0.867 -3.523† 0.832 
 GAM -2.569 -4.349‡ 0.621 -4.027‡ 0.476 
 GRF -1.846 -3.054† 0.793 -2.247 0.853 
 RMT -1.219 -0.975 0.912 -0.971 0.831 
 RVT -1.333 -1.387 0.923 -1.303 0.820 
 SOR -1.839 -2.160 0.825 -2.045 0.618 
 SPE -3.726‡ -5.367‡ 0.286 -6.328‡ 0.230 
 TY -2.728 -1.987 0.594 -2.711† 0.361 
 USA -1.959 -1.787 0.748 -1.632 0.513 
Corp Debt BBB ICB -3.221† -3.873‡ 0.802 -4.280‡ 0.653 
 INSI -3.719‡ -3.931‡ 0.850 -4.028‡ 0.766 
 MGF -2.423 -3.485‡ 0.706 -3.529‡ 0.617 
 MIN -2.287 -1.004 0.852 -0.780 0.807 
 PAI -2.470 -2.074 0.848 -2.570 0.806 
 VBF -3.255† -3.264† 0.896 -2.949* 0.844 
General Bond DUC -3.592† -2.793* 0.879 -2.416 0.825 
 JHI -2.115 -2.059 0.933 -2.029 0.873 
 KMM -2.438 -2.748* 0.883 -2.534 0.697 
 KST -2.468 -2.196 0.737 -2.400 0.699 
 MCI -2.865* -3.497† 0.893 -2.800* 0.964 
 MCR -2.864* -2.635 0.867 -2.212 0.795 
 MMT -3.229† -3.443† 0.917 -3.269† 0.843 
 MPV -3.305† -4.039‡ 0.788 -2.843* 0.746 
 PCM -2.063 -2.325 0.677 -1.119 0.890 
 PIM -2.603 -2.784* 0.760 -3.126† 0.577 
 PPT -2.218 -1.789 0.812 -1.530 0.633 

Note: (a) 𝜏௅ெ , 𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ, 𝜏ோ஺௅ௌି௅ெሺ௧ఱሻ are the test statistics for the LM, RALS-LM(2&3), and RALS-LM(𝑡ହ) 
tests, respectively. (b) 𝜌ොሺଶ&ଷሻ

ଶ  and 𝜌ොሺ௧ఱሻ
ଶ  indicate the ratio of the estimated error variances for RALS-LM (2&3) and 

RALS-LM (𝑡ହ) tests, respectively. (c) The 1%, 5%, and 10% critical values for the LM test (T = 200) are: -3.61, -3.04, 
-2.76. (d) The critical values for RALS-LM tests are reported in Table 11.1 of Meng et al. (2014). (e) ‡, †, and * 
represent 1%, 5%, and 10% rejection, respectively.   
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Table 6. LM and RALS-LM Test Results with One Trend Break 
 

Categories Fund 𝜏௅ெ
∗  𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ

∗  𝜌ොሺଶ&ଷሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ఱሻ

∗  𝜌ොሺ௧ఱሻ
ଶ  𝑇෠஻ 

Core  ADX -3.944† -5.305‡ 0.837 -6.167‡ 0.703 2002:09 
Funds CET -5.167‡ -3.632† 0.786 -4.294‡ 0.704 2008:09 
 CLM -2.651 -2.064 0.655 -2.409 0.992 2011:08 
 CRF -3.024 -2.113 0.653 -2.445 0.719 2011:08 
 FUND -4.416‡ -4.169‡ 0.888 -4.118‡ 0.833 2008:11 
 GAB -3.652* -2.943 0.874 -3.087 0.906 2014:07 
 GAM -5.411‡ -7.033‡ 0.616 -6.982‡ 0.553 2000:12 
 GRF -3.045 -3.690† 0.819 -3.308* 0.851 2004:04 
 RMT -3.214 -2.910 0.905 -3.150 0.826 2007:05 
 RVT -3.181 -3.390* 0.918 -3.706† 0.759 2007:01 
 SOR -3.473* -3.855† 0.829 -4.031‡ 0.631 2007:01 
 SPE -12.37‡ -21.874‡ 0.304 -25.732‡ 0.208 2002:06 
 TY -4.554‡ -3.362* 0.666 -4.050‡ 0.427 2008:12 
 USA -3.867† -3.676† 0.735 -3.767† 0.485 2001:01 
Corp Debt  ICB -3.478* -3.902† 0.787 -4.905‡ 0.673 2000:12 
BBB INSI -3.292 -3.708† 0.860 -4.529‡ 0.746 2000:11 
 MGF -3.236 -2.865 0.793 -3.475† 0.676 2008:08 
 MIN -2.521 -1.549 0.848 -1.275 0.788 2013:01 
 PAI -3.528* -2.903 0.846 -3.005 0.836 2008:10 
 VBF -3.499* -3.740† 0.873 -3.793† 0.782 2015:07 
General  DUC -3.471* -2.732 0.868 -2.186 0.859 2015:12 
Bond JHI -2.705 -2.386 0.928 -2.492 0.812 2012:05 
 KMM -2.905 -3.390* 0.871 -3.557† 0.659 2000:12 
 KST -5.226‡ -4.831‡ 0.818 -5.534‡ 0.724 2001:03 
 MCI -3.901† -4.755‡ 0.855 -4.469‡ 0.928 2000:11 
 MCR -3.093 -3.867† 0.828 -4.038† 0.759 2001:01 
 MMT -3.111 -3.130 0.918 -2.759 0.862 2015:08 
 MPV -3.033 -3.575† 0.782 -2.107 0.661 2012:06 
 PCM -3.866† -4.363‡ 0.683 -3.438* 0.778 2006:12 
 PIM -3.120 -3.004 0.812 -3.132* 0.673 2009:03 
 PPT -3.038 -2.780 0.810 -2.085 0.640 2007:11 

Note: (a) 𝜏௅ெ
∗ , 𝜏ୖ୅୐ୗି୐୑ሺଶ&ଷሻ

∗ , 𝜏ୖ୅୐ୗି୐୑ሺ௧ఱሻ
∗  are the test statistics for the LM, RALS-LM(2&3), and RALS-LM(𝑡ହ) 

tests with transformation, respectively. (b) 𝜌ොሺଶ&ଷሻ
ଶ  and 𝜌ොሺ௧ఱሻ

ଶ  indicate the ratio of the estimated error variances for 

RALS-LM (2&3) and RALS-LM (𝑡ହ) tests, respectively. (c) T෡஻ denote the estimated break point. (d) The 1%, 5%, 
and 10% critical values for the one break LM test with transformation (T = 200) are: - 4.261, - 3.716, -3.443. (e) The 
critical values for RALS-LM tests are reported in Table 1 of Meng et al. (2017). (f) ‡, †, and * represent 1%, 5%, and 
10% rejection, respectively.   
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Table 7. LM and RALS-LM Test Results with Two Trend Breaks 
 

Categories Fund 𝜏௅ெ
∗  𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ

∗  𝜌ොሺଶ&ଷሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ𝑡5ሻ

∗  𝜌ොሺ𝑡5ሻ
ଶ  𝑇෠஻ 

Core ADX -8.232‡ -9.235‡ 0.878 -9.846‡ 0.785 2000:11 2002:09 
Funds CET -4.416† -4.314† 0.815 -4.347† 0.656 2008:09 2008:12 
 CLM -6.184‡ -6.208‡ 0.869 -6.449‡ 0.759 2008:07 2008:10 
 CRF -8.280‡ -9.020‡ 0.783 -9.692‡ 0.58 2008:07 2008:10 
 FUND -6.953‡ -6.835‡ 0.864 -7.321‡ 0.751 2004:08 2009:05 
 GAB -6.085‡ -6.398‡ 0.810 -6.996‡ 0.737 2001:01 2002:09 
 GAM -6.467‡ -7.535‡ 0.782 -8.000‡ 0.638 2008:09 2008:12 
 GRF -3.165 -3.582 0.830 -3.668* 0.696 2003:05 2003:08 
 RMT -4.612† -3.731 0.863 -4.091† 0.710 2007:01 2007:12 
 RVT -4.179* -4.232† 0.899 -4.510‡ 0.778 2007:01 2007:11 
 SOR -6.237‡ -7.347‡ 0.826 -7.821‡ 0.663 2002:09 2003:09 
 SPE -12.88‡ -14.50‡ 0.848 -15.91‡ 0.705 2001:02 2001:05 
 TY -7.074‡ -10.18‡ 0.669 -10.80‡ 0.505 2008:10 2009:07 
 USA -7.799‡ -8.416‡ 0.812 -9.511‡ 0.628 2008:07 2008:12 
Corp Debt ICB -5.830‡ -6.295‡ 0.833 -6.743‡ 0.722 2008:08 2009:01 
BBB INSI -5.688‡ -6.217‡ 0.953 -6.286‡ 0.906 2008:08 2009:02 
 MGF -5.735‡ -5.674‡ 0.931 -5.902‡ 0.872 2008:08 2009:01 
 MIN -6.039‡ -6.135‡ 0.970 -6.165‡ 0.928 2013:03 2013:09 
 PAI -3.776 -3.808 0.940 -3.676 0.934 2008:10 2009:02 
 VBF -4.553† -4.462† 0.919 -4.247† 0.903 2008:08 2009:02 
General DUC -6.255‡ -6.840‡ 0.858 -6.423‡ 0.785 2006:01 2009:01 
Bond JHI -5.442‡ -5.568‡ 0.907 -5.699‡ 0.844 2011:06 2012:10 
 KMM -5.087‡ -4.787‡ 0.936 -4.657‡ 0.784 2007:02 2009:01 
 KST -5.582‡ -5.608‡ 0.787 -5.431‡ 0.779 2000:11 2001:04 
 MCI -5.500‡ -5.823‡ 0.959 -5.736‡ 0.935 2007:04 2009:04 
 MCR -5.623‡ -5.625‡ 0.867 -5.600‡ 0.805 2008:08 2009:02 
 MMT -4.009* -4.110† 0.889 -4.088† 0.812 2013:03 2013:09 
 MPV -4.287† -4.624‡ 0.821 -3.951† 0.723 2006:11 2007:02 
 PCM -5.733‡ -6.424‡ 0.726 -5.586‡ 0.867 2008:07 2008:10 
 PIM -4.027* -4.078† 0.802 -3.931† 0.666 2007:09 2007:12 
 PPT -8.188‡ -8.633‡ 0.876 -10.02‡ 0.641 2007:09 2007:12 

Note: (a) 𝜏௅ெ
∗ , 𝜏ୖ୅୐ୗି୐୑ሺଶ&ଷሻ

∗ , 𝜏ୖ୅୐ୗି୐୑ሺ௧ఱሻ
∗  are the test statistics for the LM, RALS-LM (2&3), and RALS-LM (𝑡ହ) 

tests with transformation, respectively. (b) 𝜌ොሺଶ&ଷሻ
ଶ  and 𝜌ොሺ௧ఱሻ

ଶ  indicate the ratio of the estimated error variances for 

RALS-LM (2&3) and RALS-LM (𝑡ହ) tests, respectively. (c) T෡஻ denote the optimal number of lags and the estimated 
break points. (d) The 1%, 5%, and 10% critical values for the two breaks LM test with transformation (T = 200) are: 
- 4.799, - 4.261, - 3.997. (e) The critical values for RALS-LM tests are reported in Table 1 of Meng et al. (2017). (f) 
‡, †, and * represent 1%, 5%, and 10% rejection, respectively.   
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Appendix A: Derivation of 𝒉ሺ𝒕ሻ in RALS(tν) Test 

 
Let ሼ𝑦ଵ,𝑦ଶ,⋯ ,𝑦்ሽ  be i.i.d. observations from a generalized Student’s t-distribution with the 

following pdf: 
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where 𝜇 is a location parameter, 𝜎 is a scale parameter, and 𝜈 denotes degrees of freedom. The 
log-likelihood function is the following. 
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Differentiating ln 𝐿்ሺ⋅ሻ with respect to 𝜇 yields, 
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The first order condition is 
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where 𝜈 is degrees of freedom. ■ 
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Appendix B: Additional Tables and Figures 

 

Table B1. RALS(tν) Test Results with Alternative Degrees of Freedom 

Categories Fund 𝜏ோ஺௅ௌሺ௧యሻ 𝜌ොሺ௧యሻ
ଶ  𝜏ோ஺௅ௌሺ௧ళሻ 𝜌ොሺ௧ళሻ

ଶ  𝑘෠ 
Core Funds ADX -3.470‡ 0.753 -3.476‡ 0.792 8 
 CET -2.211 0.612 -2.009 0.646 5 
 CLM -1.878 0.865 -1.684 0.852 10 
 CRF -1.959 0.793 -1.825 0.681 0 
 FUND -2.426* 0.789 -2.688* 0.731 2 
 GAB -3.367† 0.852 -3.274† 0.817 0 
 GAM -3.395‡ 0.451 -3.220‡ 0.492 9 
 GRF -1.696 0.913 -1.804 0.820 10 
 RMT -1.713 0.819 -1.769 0.825 10 
 RVT -1.740 0.828 -1.846 0.811 7 
 SOR -1.601 0.585 -1.471 0.631 3 
 SPE -4.190‡ 0.615 -3.835‡ 0.681 1 
 TY -3.851‡ 0.385 -3.669‡ 0.410 6 
 USA -1.861 0.486 -1.914 0.530 1 
Corp Debt BBB ICB -4.419‡ 0.630 -4.354‡ 0.661 7 
 INSI -3.701‡ 0.780 -3.904‡ 0.756 5 
 MGF -3.027† 0.630 -3.050† 0.622 8 
 MIN -0.878 0.794 -0.766 0.802 5 
 PAI -3.356† 0.829 -3.266† 0.820 8 
 VBF -3.141† 0.847 -3.104† 0.842 3 
General Bond DUC -0.736 0.753 -0.830 0.752 1 
 JHI -2.145 0.874 -2.138 0.876 1 
 KMM -3.187† 0.676 -3.289‡ 0.681 7 
 KST -2.933† 0.631 -2.936† 0.624 10 
 MCI -2.848† 0.979 -2.817† 0.945 2 
 MCR -2.735* 0.831 -2.706* 0.825 1 
 MMT -3.372‡ 0.837 -3.486‡ 0.847 1 
 MPV -2.809† 0.777 -2.818† 0.722 8 
 PCM -1.749 0.956 -1.409 0.889 4 
 PIM -3.130† 0.594 -3.306‡ 0.587 8 
 PPT -1.496 0.684 -1.495 0.672 10 

Note: (a) 𝜏ோ஺௅ௌሺ௧ೡሻ are the test statistics for the RALS(𝑡௩) test. (b) 𝜌ොሺ௧ೡሻ
ଶ  indicates the ratio of the estimated error 

variances for the RALS(𝑡௩). (c) We chose the optimal number of lags (𝑘෠) based on the general-to-specific rule with a 
maximum 10 lags. (d) *, † and ‡ denote a rejection of the null hypothesis of nonstationarity at the 10%, 5% and 1% 
significance level, respectively. (e) The critical values of RALS tests are dependent on 𝜌ොଶ and were obtained from 
Hansen (1995). 
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Table B2. LM and RALS-LM Test Results with One Level Shift 
 

Categories Fund 𝜏௅ெ 𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ 𝜌ොሺଶ&ଷሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ఱሻ 𝜌ොሺ௧ఱሻ

ଶ  𝑇෠஻ 𝑘෠ 
Core Funds ADX -1.952 -1.787 0.827 -1.741 0.723 2002:07 8 

 CET -3.531† -2.671 0.843 -2.806* 0.714 2008:10 8 
 CLM -2.357 -1.906 0.869 -2.831* 0.805 2008:08 0 
 CRF -1.803 -0.886 0.793 -2.123 0.712 2008:08 0 
 FUND -1.480 -1.204 0.861 -0.992 0.776 2007:10 3 
 GAB -2.312 -1.222 0.878 -1.562 0.830 2009:04 1 
 GAM -2.854* -2.580 0.720 -2.378 0.632 2008:10 9 
 GRF -2.315 -3.467† 0.827 -2.221 0.985 2003:06 9 
 RMT -1.273 -1.672 0.920 -1.401 0.844 2005:12 10 
 RVT -1.505 -1.699 0.914 -1.423 0.814 2009:04 7 
 SOR -2.567 -2.016 0.856 -2.481 0.615 2008:10 6 
 SPE -1.911 -0.614 0.306 -1.211 0.200 2001:02 0 
 TY -3.671‡ -3.230† 0.617 -2.896† 0.433 2008:11 6 
 USA -2.564 -1.995 0.773 -2.180 0.590 2008:10 5 

Corp Debt  ICB -2.769* -2.745* 0.843 -2.935† 0.741 2000:11 1 
BBB INSI -2.481 -2.060 0.914 -1.698 0.876 2008:08 10 

 MGF -2.135 -2.660* 0.790 -3.094† 0.663 2008:08 8 
 MIN -2.004 -1.570 0.975 -1.466 0.916 2013:04 5 
 PAI -1.936 -1.888 0.922 -1.948 0.878 2009:09 9 
 VBF -3.210† -3.739‡ 0.893 -3.433† 0.832 2003:06 3 

General  DUC -2.202 -1.597 0.914 -1.211 0.781 2008:12 10 
Bond JHI -2.178 -2.531 0.951 -2.429 0.873 2012:09 1 

 KMM -2.647 -2.503 0.906 -2.406 0.676 2008:10 7 
 KST -2.035 -1.746 0.713 -1.520 0.726 2000:12 10 
 MCI -2.546 -2.884* 0.927 -2.426 0.978 2009:04 2 
 MCR -2.836* -2.646 0.879 -2.258 0.847 2014:11 10 
 MMT -2.794* -2.541 0.950 -2.280 0.856 2008:08 1 
 MPV -2.734 -2.822* 0.824 -1.990 0.772 2006:12 8 
 PCM -3.078† -3.085† 0.820 -2.450 0.905 2008:08 8 
 PIM -3.546† -3.566‡ 0.794 -3.832‡ 0.614 2007:09 8 
 PPT -3.143† -3.059† 0.834 -3.335† 0.582 2007:10 10 

Note: (a) 𝜏௅ெ , 𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ, 𝜏ோ஺௅ௌି௅ெሺ௧ఱሻ are the test statistics for the LM, RALS-LM(2&3), and RALS-LM(𝑡ହ) 
tests, respectively. (b) 𝜌ොሺଶ&ଷሻ

ଶ  and 𝜌ොሺ௧ఱሻ
ଶ  indicate the ratio of the estimated error variances for RALS-LM(2&3) and 

RALS-LM(𝑡ହ) tests, respectively. (c) 𝑘෠  and T෡஻  denote the optimal number of lags and the estimated break point, 
respectively. Since the number of lags and the break date determined using max F statistic are used in both LM and 
RALS-LM unit root tests, we report them one time. (d) The critical values for LM and RALS-LM tests are reported 
in Table 11.1 of Meng et al. (2014). (e) *, †, and ‡ denote a 10%, 5%, and 1% rejection, respectively.   
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Table B2. Continued 

Categories Fund 𝜏ோ஺௅ௌି௅ெሺ௧యሻ 𝜌ොሺ௧యሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ళሻ 𝜌ොሺ௧ళሻ

ଶ  𝑇෠஻ 𝑘෠ 
Core Funds ADX -1.911 0.695 -1.649 0.740 2002:07 8 

 CET -3.012† 0.702 -2.874* 0.725 2008:10 8 
 CLM -1.954 0.850 -1.848 0.817 2008:08 0 
 CRF -2.066 0.789 -2.124 0.679 2008:08 0 
 FUND -0.717 0.829 -0.776 0.785 2007:10 3 
 GAB -2.179 0.864 -2.075 0.856 2009:04 1 
 GAM -2.371 0.635 -2.373 0.635 2008:10 9 
 GRF -2.144 0.994 -2.052 0.947 2003:06 9 
 RMT -1.322 0.848 -1.463 0.843 2005:12 10 
 RVT -1.336 0.832 -1.479 0.809 2009:04 7 
 SOR -2.859† 0.589 -2.525 0.654 2008:10 6 
 SPE -1.025 0.210 -0.843 0.201 2001:02 0 
 TY -2.849† 0.415 -2.755† 0.444 2008:11 6 
 USA -1.997 0.575 -1.992 0.605 2008:10 5 

Corp Debt BBB ICB -2.578 0.730 -2.478 0.755 2000:11 1 
 INSI -2.143 0.905 -2.128 0.876 2008:08 10 
 MGF -3.004† 0.669 -3.128† 0.663 2008:08 8 
 MIN -1.487 0.896 -1.462 0.927 2013:04 5 
 PAI -1.681 0.875 -1.724 0.892 2009:09 9 
 VBF -3.399† 0.833 -3.457† 0.835 2003:06 3 

General Bond DUC -1.597 0.757 -1.683 0.778 2008:12 10 
 JHI -2.443 0.854 -2.434 0.881 2012:09 1 
 KMM -2.383 0.661 -2.419 0.689 2008:10 7 
 KST -1.419 0.777 -1.606 0.701 2000:12 10 
 MCI -2.448 0.977 -2.409 0.976 2009:04 2 
 MCR -2.676 0.860 -2.612 0.839 2014:11 10 
 MMT -2.247 0.836 -2.306 0.867 2008:08 1 
 MPV -2.125 0.834 -1.910 0.733 2006:12 8 
 PCM -2.059 0.924 -1.933 0.888 2008:08 8 
 PIM -3.797‡ 0.617 -3.851‡ 0.617 2007:09 8 
 PPT -3.434‡ 0.545 -3.274† 0.605 2007:10 10 

Note: (a) 𝜏ோ஺௅ௌି௅ெሺ௧యሻ, 𝜏ோ஺௅ௌି௅ெሺ௧ళሻ are the test statistics for the RALS-LM tests with degrees of freedom of 3 and 7, 
respectively. (b) 𝜌ොሺ௧యሻ

ଶ  and 𝜌ොሺ௧ళሻ
ଶ  indicate the ratio of the estimated error variances for RALS-LM (𝑡ଷ) and RALS-LM 

(𝑡଻) tests, respectively. (c) 𝑘෠ and T෡஻ denote the optimal number of lags and the estimated break point, respectively. 
Since the number of lags and the break date determined using max F statistic are used in both LM and RALS-LM unit 
root tests, we report them one time. (d) The critical values for RALS-LM tests are reported in Table 11.1 of Meng et 
al. (2014). (e) *, †, and ‡ denote a 10%, 5%, and 1% rejection, respectively.   
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Table B3. LM and RALS-LM Test Results with Two Level Shifts 
 

Categories Fund 𝜏௅ெ 𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ 𝜌ොሺଶ&ଷሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ఱሻ 𝜌ොሺ௧ఱሻ

ଶ  𝑇෠஻ 𝑘෠ 
Core  ADX -1.780 -1.356 0.875 -1.499 0.772 2002:07 2007:11 8 
Funds CET -3.180† -2.887* 0.839 -3.361† 0.684 2001:01 2008:10 5 

 CLM -2.163 -1.981 0.871 -2.598 0.825 2008:08 2010:01 0 
 CRF -2.118 -2.172 0.880 -2.788* 0.801 2002:09 2008:08 0 
 FUND -1.523 -1.081 0.893 -0.910 0.773 2007:10 2009:02 4 
 GAB -2.453 -1.654 0.857 -2.213 0.861 2008:11 2009:04 7 
 GAM -2.658 -3.289† 0.752 -3.341† 0.620 2008:10 2008:12 9 
 GRF -3.474† -3.897‡ 0.812 -3.895‡ 0.698 2003:05 2004:03 1 
 RMT -1.194 -0.699 0.949 -0.997 0.898 2008:12 2009:04 10 
 RVT -1.903 -2.112 0.932 -1.850 0.828 2008:08 2009:04 7 
 SOR -2.127 -1.960 0.858 -2.067 0.675 2008:10 2008:12 6 
 SPE -2.010 -0.851 0.289 -1.478 0.198 2001:02 2009:12 0 
 TY -2.024 -1.489 0.654 -0.297 0.464 2008:11 2009:02 10 
 USA -2.579 -2.367 0.813 -1.773 0.630 2004:04 2008:10 0 

Corp Debt ICB -2.982* -2.911* 0.858 -3.233† 0.736 2000:11 2008:11 1 
BBB INSI -1.856 -1.384 0.937 -0.929 0.811 2008:08 2009:01 1 

 MGF -2.342 -2.826* 0.803 -3.508‡ 0.677 2008:08 2008:10 8 
 MIN -1.412 -1.033 0.981 -1.039 0.907 2010:11 2013:04 5 
 PAI -2.600 -2.880* 0.959 -2.909* 0.926 2008:12 2009:09 9 
 VBF -3.406† -3.665‡ 0.916 -3.719‡ 0.835 2003:06 2008:12 6 

General  DUC -3.173† -3.018† 0.905 -1.976 0.815 2006:02 2008:12 1 
Bond JHI -2.309 -2.467 0.977 -2.286 0.918 2011:07 2012:09 1 

 KMM -2.540 -2.499 0.931 -2.647* 0.631 2000:11 2008:10 7 
 KST -2.289 -2.042 0.761 -2.110 0.791 2000:12 2001:07 10 
 MCI -2.673 -3.066† 0.939 -2.661 0.991 2008:09 2009:04 2 
 MCR -2.341 -1.723 0.886 -1.513 0.859 2008:08 2014:11 10 
 MMT -3.126† -3.239† 0.956 -3.078† 0.874 2008:08 2008:12 1 
 MPV -2.202 -1.971 0.872 -1.692 0.819 2003:11 2006:12 10 
 PCM -2.078 -2.044 0.888 -2.101 0.895 2007:02 2008:08 4 
 PIM -3.389† -3.222† 0.787 -3.455‡ 0.605 2007:09 2008:09 8 
 PPT -2.759 -2.275 0.827 -2.098 0.563 2007:10 2008:09 10 

Note: (a) 𝜏௅ெ, 𝜏ோ஺௅ௌି௅ெሺଶ&ଷሻ, 𝜏ோ஺௅ௌି௅ெሺ௧ఱሻ are the test statistics for the LM, RALS-LM (2&3), and RALS-LM (𝑡ହ) 
tests, respectively. (b) 𝜌ොሺଶ&ଷሻ

ଶ  and 𝜌ොሺ௧ఱሻ
ଶ  indicate the ratio of the estimated error variances for RALS-LM (2&3) and 

RALS-LM (𝑡ହ) tests, respectively. (c) 𝑘෠ and T෡஻ denote the optimal number of lags and the estimated break points, 
respectively. Since the number of lags and the break dates determined using max F statistic are used in both LM and 
RALS-LM unit root tests, we report them one time. (d) The critical values for LM and RALS-LM tests are reported 
in Table 11.1 of Meng et al. (2014). (e) *, †, and ‡ denote a 10%, 5%, and 1% rejection, respectively.  
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Table B3. Continued 
 

Categories Fund 𝜏ோ஺௅ௌି௅ெሺ௧యሻ 𝜌ොሺ௧యሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ళሻ 𝜌ොሺ௧ళሻ

ଶ  𝑇෠஻ 𝑘෠ 
Core Funds ADX -1.668 0.747 -1.410 0.787 2002:07 2007:11 8 

 CET -3.386† 0.668 -3.328† 0.696 2001:01 2008:10 5 
 CLM -1.901 0.858 -1.764 0.842 2008:08 2010:01 0 
 CRF -2.682* 0.835 -2.840* 0.782 2002:09 2008:08 0 
 FUND -0.342 0.814 -0.487 0.819 2007:10 2009:02 4 
 GAB -3.021* 0.971 -2.923* 0.917 2008:11 2009:04 7 
 GAM -3.402† 0.603 -3.291† 0.633 2008:10 2008:12 9 
 GRF -2.732* 0.714 -2.807* 0.669 2003:05 2004:03 1 
 RMT -0.938 0.882 -1.027 0.903 2008:12 2009:04 10 
 RVT -1.767 0.834 -1.897 0.830 2008:08 2009:04 7 
 SOR -2.210 0.670 -2.140 0.702 2008:10 2008:12 6 
 SPE -1.331 0.206 -1.074 0.200 2001:02 2009:12 0 
 TY -0.897 0.454 -1.272 0.480 2008:11 2009:02 10 
 USA -1.291 0.610 -1.455 0.635 2004:04 2008:10 0 

Corp Debt BBB ICB -2.790* 0.720 -2.707* 0.746 2000:11 2008:11 1 
 INSI -0.985 0.812 -1.106 0.834 2008:08 2009:01 1 
 MGF -3.465‡ 0.676 -3.523‡ 0.681 2008:08 2008:10 8 
 MIN -1.072 0.889 -1.023 0.919 2010:11 2013:04 5 
 PAI -2.417 0.955 -2.504 0.945 2008:12 2009:09 9 
 VBF -3.199† 0.855 -3.257† 0.858 2003:06 2008:12 6 

General Bond DUC -1.811 0.791 -2.083 0.823 2006:02 2008:12 1 
 JHI -2.288 0.907 -2.293 0.923 2011:07 2012:09 1 
 KMM -2.742* 0.585 -2.595* 0.663 2000:11 2008:10 7 
 KST -1.997 0.843 -2.189 0.762 2000:12 2001:07 10 
 MCI -2.654 0.997 -2.668 0.986 2008:09 2009:04 2 
 MCR -1.752 0.871 -1.675 0.849 2008:08 2014:11 10 
 MMT -3.034† 0.859 -3.101† 0.884 2008:08 2008:12 1 
 MPV -1.948 0.834 -1.817 0.804 2003:11 2006:12 10 
 PCM -2.050 0.928 -2.133 0.875 2007:02 2008:08 4 
 PIM -3.408† 0.603 -3.484‡ 0.613 2007:09 2008:09 8 
 PPT -2.176 0.510 -2.072 0.592 2007:10 2008:09 10 

Note: (a) 𝜏ோ஺௅ௌି௅ெሺ௧యሻ, 𝜏ோ஺௅ௌି௅ெሺ௧ళሻ are the test statistics for the RALS-LM tests with degrees of freedom of 3 and 7, 
respectively. (b) 𝜌ොሺ௧యሻ

ଶ  and 𝜌ොሺ௧ళሻ
ଶ  indicate the ratio of the estimated error variances for RALS-LM (𝑡ଷ) and RALS-LM 

(𝑡଻) tests, respectively. (c) 𝑘෠ and T෡஻ denote the optimal number of lags and the estimated break points, respectively. 
Since the number of lags and the break dates determined using max F statistic are used in both LM and RALS-LM 
unit root tests, we report them one time. (d) The critical values for RALS-LM tests are reported in Table 11.1 of Meng 
et al. (2014). (e) *, †, and ‡ denote a 10%, 5%, and 1% rejection, respectively.  
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Table B4. No Trend Break RALS-LM Test Results with Alternative Degrees of Freedom 
 

Categories Fund 𝜏ோ஺௅ௌି௅ெሺ௧యሻ 𝜌ොሺ௧యሻ
ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ళሻ 𝜌ොሺ௧ళሻ

ଶ  𝑘෠ 
Core Funds ADX -2.086 0.751 -2.153 0.793 8 
 CET -2.372 0.614 -2.134 0.651 5 
 CLM -1.388 0.890 -1.179 0.874 10 
 CRF -1.909 0.624 -1.604 0.557 0 
 FUND -1.574 0.802 -1.737 0.750 2 
 GAB -3.571‡ 0.853 -3.481† 0.819 0 
 GAM -4.121‡ 0.453 -3.965‡ 0.493 9 
 GRF -2.142 0.915 -2.310 0.814 10 
 RMT -0.937 0.828 -0.997 0.832 10 
 RVT -1.234 0.833 -1.344 0.817 7 
 SOR -2.171 0.583 -1.987 0.634 3 
 SPE -6.225‡ 0.235 -6.400‡ 0.230 3 
 TY -2.944† 0.342 -2.538* 0.378 4 
 USA -1.587 0.490 -1.660 0.533 1 
Corp Debt BBB ICB -4.311‡ 0.633 -4.254‡ 0.664 7 
 INSI -3.897‡ 0.786 -4.112‡ 0.757 5 
 MGF -3.515‡ 0.624 -3.516‡ 0.616 8 
 MIN -0.849 0.802 -0.747 0.810 5 
 PAI -2.658 0.801 -2.515 0.808 8 
 VBF -2.965* 0.848 -2.952* 0.845 3 
General Bond DUC -2.463 0.825 -2.397 0.825 3 
 JHI -2.046 0.870 -2.028 0.874 1 
 KMM -2.491 0.695 -2.569 0.702 7 
 KST -2.320 0.740 -2.444 0.679 10 
 MCI -2.817* 0.985 -2.792* 0.949 2 
 MCR -2.257 0.802 -2.207 0.794 1 
 MMT -3.206† 0.835 -3.301† 0.849 1 
 MPV -2.841* 0.771 -2.864* 0.720 8 
 PCM -1.281 0.929 -1.044 0.866 4 
 PIM -3.037† 0.579 -3.173† 0.580 8 

 PPT -1.557 0.630 -1.511 0.639 10 
Note: (a) 𝜏ோ஺௅ௌି௅ெሺ௧యሻ, 𝜏ோ஺௅ௌି௅ெሺ௧ళሻ are the test statistics for the RALS-LM tests with degrees of freedom of 3 and 7, 
respectively. (b) 𝜌ොሺ௧యሻ

ଶ  and 𝜌ොሺ௧ళሻ
ଶ  indicate the ratio of the estimated error variances for RALS-LM (𝑡ଷ) and RALS-LM 

(𝑡଻) tests, respectively. (c) 𝑘෠ denotes the optimal number of lags. Since the number of lags determined using max F 
statistic is used in both LM and RALS-LM unit root tests, we report this one time. (d) The critical values for RALS-
LM tests are reported in Table 11.1 of Meng et al. (2014). (e) ‡, †, and * represent 1%, 5%, and 10% rejection, 
respectively.  
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Table B5. One Trend Break RALS-LM Test Results with Alternative Degrees of Freedom 
 

Categories Fund 𝜏ோ஺௅ௌି௅ெሺ௧యሻ
∗  𝜌ොሺ௧యሻ

ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ళሻ
∗  𝜌ොሺ௧ళሻ

ଶ  𝑇෠஻ 𝑘෠ 
Core Funds ADX -6.331‡ 0.671 -6.050‡ 0.724 2002:09 8 
 CET -3.492† 0.733 -3.416* 0.711 2008:09 10 
 CLM -2.248 0.993 -2.100 0.980 2011:08 8 
 CRF -2.630 0.741 -2.313 0.697 2011:08 0 
 FUND -3.156 0.887 -3.121 0.855 2008:11 4 
 GAB -3.177 0.931 -3.028 0.889 2014:07 0 
 GAM -6.958‡ 0.543 -6.981‡ 0.561 2000:12 9 
 GRF -3.158 0.920 -3.417* 0.806 2004:04 10 
 RMT -3.085 0.839 -3.182 0.824 2007:05 10 
 RVT -3.664† 0.731 -3.601† 0.763 2007:01 4 
 SOR -3.729† 0.641 -3.817† 0.651 2007:01 6 
 SPE -15.23‡ 0.207 -14.581‡ 0.213 2002:06 0 
 TY -4.052‡ 0.402 -3.682† 0.442 2008:12 3 
 USA -2.664 0.491 -2.643 0.517 2001:01 6 
Corp Debt BBB ICB -4.946‡ 0.660 -4.884‡ 0.667 2000:12 7 
 INSI -4.513‡ 0.751 -4.523‡ 0.747 2000:11 5 
 MGF -3.516† 0.687 -3.426† 0.675 2008:08 8 
 MIN -0.886 0.777 -0.786 0.789 2013:01 3 
 PAI -2.561 0.870 -2.443 0.855 2008:10 8 
 VBF -3.772† 0.794 -3.781† 0.803 2015:07 3 
General Bond DUC -2.081 0.881 -1.997 0.845 2015:12 3 
 JHI -2.540 0.791 -2.473 0.824 2012:05 1 
 KMM -3.560† 0.663 -3.552† 0.663 2000:12 7 
 KST -5.510‡ 0.749 -5.527‡ 0.712 2001:03 10 
 MCI -4.449‡ 0.934 -4.494‡ 0.919 2000:11 2 
 MCR -3.994† 0.775 -4.050‡ 0.755 2001:01 1 
 MMT -2.715 0.855 -2.794 0.865 2015:08 1 
 MPV -2.424 0.686 -2.402 0.650 2012:06 8 
 PCM -2.473 0.828 -2.535 0.792 2006:12 9 
 PIM -2.807 0.694 -3.010 0.670 2009:03 9 
 PPT -1.566 0.626 -1.631 0.632 2007:11 9 
Note: (a) 𝜏ୖ୅୐ୗି୐୑ሺ௧యሻ

∗ , 𝜏ୖ୅୐ୗି୐୑ሺ௧ళሻ
∗  are the test statistics for the RALS-LM tests with degrees of freedom of 3 and 7, 

respectively. (b) 𝜌ොሺ௧యሻ
ଶ  and 𝜌ොሺ௧ళሻ

ଶ  indicate the ratio of the estimated error variances for RALS-LM (𝑡ଷ) and RALS-LM 

(𝑡଻) tests, respectively. (c) 𝑘෠ and T෡஻ denote the optimal number of lags and the estimated break point, respectively. 
Since the number of lags and the break date determined using max F statistic are used in both LM and RALS-LM unit 
root tests, we report them one time. (d) The critical values for RALS-LM tests are reported in Table 1 of Meng et al. 
(2017). (e) ‡, †, and * represent 1%, 5%, and 10% rejection, respectively.   
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Table B6. Two Trend Break RALS-LM Test Results with Alternative Degrees of Freedom 
 

Categories Fund 𝜏ோ஺௅ௌି௅ெሺ௧యሻ
∗  𝜌ොሺ௧యሻ

ଶ  𝜏ோ஺௅ௌି௅ெሺ௧ళሻ
∗  𝜌ොሺ௧ళሻ

ଶ  𝑇෠஻ 𝑘෠ 
Core Funds ADX -9.938‡ 0.764 -9.772‡ 0.799 2000:11 2002:09 8 
 CET -4.319† 0.637 -4.356† 0.670 2008:09 2008:12 5 
 CLM -5.257‡ 0.812 -5.547‡ 0.767 2008:07 2008:10 0 
 CRF -9.526‡ 0.581 -9.795‡ 0.579 2008:07 2008:10 0 
 FUND -6.289‡ 0.797 -6.164‡ 0.807 2004:08 2009:05 4 
 GAB -6.936‡ 0.749 -7.039‡ 0.728 2001:01 2002:09 0 
 GAM -7.991‡ 0.614 -7.986‡ 0.654 2008:09 2008:12 9 
 GRF -3.458 0.739 -3.753* 0.683 2003:05 2003:08 6 
 RMT -3.370 0.693 -3.184 0.732 2007:01 2007:12 1 
 RVT -4.429† 0.780 -4.366† 0.783 2007:01 2007:11 9 
 SOR -5.018‡ 0.612 -4.884‡ 0.651 2002:09 2003:09 0 
 SPE -16.43‡ 0.672 -15.94‡ 0.718 2001:02 2001:05 5 
 TY -10.75‡ 0.483 -10.62‡ 0.524 2008:10 2009:07 6 
 USA -8.181‡ 0.690 -7.916‡ 0.717 2008:07 2008:12 10 
Corp Debt BBB ICB -6.896‡ 0.696 -6.665‡ 0.736 2008:08 2009:01 7 
 INSI -6.495‡ 0.932 -6.659‡ 0.913 2008:08 2009:02 5 
 MGF -5.612‡ 0.865 -5.529‡ 0.877 2008:08 2009:01 8 
 MIN -6.158‡ 0.914 -6.171‡ 0.936 2013:03 2013:09 5 
 PAI -3.432 0.951 -3.480 0.942 2008:10 2009:02 8 
 VBF -4.232† 0.91 -4.263† 0.901 2008:08 2009:02 3 
General Bond DUC -6.225‡ 0.778 -6.151‡ 0.809 2006:01 2009:01 3 
 JHI -5.488‡ 0.828 -5.457‡ 0.849 2011:06 2012:10 1 
 KMM -4.287† 0.803 -4.393† 0.797 2007:02 2009:01 7 
 KST -5.422‡ 0.831 -5.419‡ 0.749 2000:11 2001:04 10 
 MCI -5.721‡ 0.938 -5.741‡ 0.933 2007:04 2009:04 2 
 MCR -5.223‡ 0.803 -5.137‡ 0.808 2008:08 2009:02 1 
 MMT -4.094† 0.795 -4.092† 0.820 2013:03 2013:09 1 
 MPV -3.928† 0.748 -3.998† 0.707 2006:11 2007:02 8 
 PCM -5.480‡ 0.892 -5.651‡ 0.854 2008:07 2008:10 4 
 PIM -3.768* 0.679 -4.022† 0.664 2007:09 2007:12 8 
 PPT -10.53‡ 0.576 -9.777‡ 0.676 2007:09 2007:12 10 

Note: (a) 𝜏ோ஺௅ௌି௅ெሺ௧యሻ
∗ , 𝜏ோ஺௅ௌି௅ெሺ௧ళሻ

∗  are the test statistics for the RALS-LM tests with degrees of freedom of 3 and 7, 
respectively. (b) 𝜌ොሺ௧యሻ

ଶ  and 𝜌ොሺ௧ళሻ
ଶ  indicate the ratio of the estimated error variances for RALS-LM (𝑡ଷ) and RALS-LM 

(𝑡଻) tests, respectively. (c) 𝑘෠ and T෡஻ denote the optimal number of lags and the estimated break points, respectively. 
Since the number of lags and the break dates determined using max F statistic are used in both LM and RALS-LM 
unit root tests, we report them one time. (d) The critical values for RALS-LM tests are reported in Table 1 of Meng et 
al. (2017). (e) ‡, †, and * represent 1%, 5%, and 10% rejection, respectively.   
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Appendix C: Additional Figures 

Figure C1: Discount Data with Estimated Time-Varying Intercepts and Trend 

(a) Core Funds 
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(b) Core Debt BBB Funds 
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(c) General Bond Funds 
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