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Abstract

We propose factor-augmented out of sample forecasting models for the real

exchange rate between Korea and the US. We estimate latent common factors

by applying an array of data dimensionality reduction methods to a large panel

of monthly frequency time series data. We augment benchmark forecasting

models with common factor estimates to formulate out-of-sample forecasts of

the real exchange rate. Major findings are as follows. First, our factor mod-

els outperform conventional forecasting models when combined with factors

from the US macroeconomic predictors. Korean factor models perform overall

poorly. Second, our factor models perform well at longer horizons when Amer-

ican real activity factors are employed, whereas American nominal/financial

market factors help improve short-run prediction accuracy. Third, models with

global PLS factors from UIP fundamentals overall perform well, while PPP and

RIRP factors play a limited role in forecasting.
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1 Introduction

This paper presents out-of-sample factor-augmented forecasting models for the real

exchange rate between Korea and the US. We demonstrate that our models outper-

form commonly used benchmark models when factors are extracted from a large panel

of macroeconomic time series data in the US. We report a very limited role of factors

from Korean macroeconomic variables in predicting the real exchange rate at any

forecast horizons.

In their seminal work, Meese and Rogoff (1983) demonstrate that the random

walk (RW) model performs well in forecasting exchange rates in comparison with

the models that are motivated by exchange rate determination theories. Cheung,

Chinn, and Pascual (2005) add more recent evidence of such a disconnect between

the exchange rate and economic fundamentals, showing that exchange rate models

still do not consistently outperform the RW model in out-of-sample forecasting.1 In

a related work, Engel and West (2005) provide an interesting point that asset prices

such as the exchange rate can show a near unit root process, though these prices are

still consistent with asset pricing models, as the discount factor approaches one.2

A group of researchers, however, demonstrated that exchange rate models could

outperform the RW model at longer horizons. For example, Mark (1995) used a re-

gression model of multiple-period changes (long-differenced) in the nominal exchange

rate on the deviation of the exchange rate from its fundamentals, then reported over-

all superior long-horizon predictability of fundamentals for the exchange rate. Chinn

and Meese (1995) also report similar long-horizon evidence of greater predictability

of exchange rate models relative to the RW. Using over two century-long annual fre-

quency data, Lothian and Taylor (1996) report good out-of-sample predictability of

fundamentals for the real exchange rate. Groen (2005) reports some long-horizon

evidence of superior predictability of monetary fundamentals employing a vector au-

toregressive (VAR) model framework.3 Also, Engel, Mark, and West (2008) show

that out-of-sample predictability can be enhanced by focusing on panel estimation

and long-horizon forecasts.

1However, Engel and Hamilton (1990) report some evidence that their nonlinear models outper-
form the RW. But their findings are still at odds with uncovered interest parity (UIP).

2Many researchers provide panel evidence of a close link between monetary models and exchange
rate dynamics. See for example, Rapach and Wohar (2004), Groen (2000), and Mark and Sul (2001).

3They demonstrate that the monetary fundamentals-based common long-run model tends to
outperform the RW model as well as the standard cointegrated vector autoregressive (VAR) model
at 2 to 4 year horizons.
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Another group of researchers started using Taylor Rule fundamentals in addition

to conventional monetary fundamentals. See among others, Engel, Mark, and West

(2008), Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008), Molodtsova and Papell

(2009), Molodtsova and Papell (2013), and Ince, Molodtsova, and Papell (2016). They

show that models with Taylor Rule fundamentals tend to perform well in forecasting

the exchange rate. See Rossi (2013) for a survey of research work that demonstrates

the importance of Taylor Rule fundamentals in understanding exchange rate dynam-

ics.4

We note that the pioneering work of Stock and Watson (2002) has initiated an

influx of papers that utilize latent common factors in forecasting macroeconomic vari-

ables via principal components (PC) analysis. The current exchange rate literature

is not an exception. A number of researchers began using large panels of time se-

ries data to better understand exchange rate dynamics. For instance, Engel, Mark,

and West (2015) use cross-section information (PC factors) that are obtained from

a panel of 17 bilateral exchange rates vis-à-vis the US dollar, then demonstrate that

factor based forecasting models often outperform the RWmodel during the post-1999

sample period. They also report good forecasting performance of the dollar factor

in combination with Purchasing Power Parity (PPP) factors. Chen, Jackson, Kim,

and Resiandini (2014) used PC to extract latent common factors from 50 world com-

modity prices. Their first common factor turns out to be closely related with the

dollar exchange rate, which is consistent with an observation that world commodities

are priced in US dollars. They show that this first common factor yields superior

out-of-sample predictive contents for the dollar exchange rate.

Greenaway-McGrevy, Mark, Sul, and Wu (2018) demonstrate that exchange rates

are mainly driven by a dollar and an euro factor. They show that their dollar-euro

factor model dominates the RW model in the out-of-sample prediction performance.

Verdelhan (2018) uses portfolios of international currencies to extract the two risk fac-

tors (dollar factor and carry factor), which successfully explain exchange rate dynam-

ics. Using a structural Bayesian vector autoregression (SBVAR), Ca’Zorzi, Kociecki,

and Rubaszek (2015) demonstrate that real interest rate and PPP fundamentals are

useful to forecast exchange rates at medium horizons, although it is still diffi cult to

4In a related work, Wang and Wu (2012) show the superior out-of-sample interval predictability of
the Taylor Rule fundamentals at longer horizons. Also, many researchers report in-sample evidence
that Taylor rul fundamentals help understanding exchange rate dynamics. See among others, Mark
(2009), Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008), Engel and West (2006), and Clarida
and Waldman (2008).
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beat the RW model in the short-run.

PC has been widely used in the current forecasting and empirical macroeconomics

literature. However, it extracts latent common factors from predictors without consid-

ering the relationship between predictors and the target variable. As shown by Boivin

and Ng (2006), its performance may be poor in forecasting the target variable if use-

ful predictive contents are in a certain factors that are dominated by other factors.

Recognizing this potential problem, we employ an alternative data dimensionality re-

duction method such as the partial least squares (PLS) method by Wold (1982). This

method utilizes the covariance between the target and predictor variables to generate

target-specific factors. See Kelly and Pruitt (2015) and Groen and Kapetanios (2016)

for some comparisons between the PC and PLS approaches. Similar to Bai and Ng

(2008) and Kelly and Pruitt (2015), we also use the Least Absolute Shrinkage and

Selection Operator (LASSO) to select target-specific groups of the predictors among

the full dataset to extract more relevant factors for the target.

In this paper, we suggest factor-augmented forecasting models for the KRW/USD

real exchange rate. We employ PC and PLS as well as the LASSO in combination

with PC and PLS to estimate common factors using large panels of 125 American and

192 Korean monthly frequency macroeconomic time series data from October 2000 to

March 2019. Since most macroeconomic data are better approximated by a nonsta-

tionary integrated process (Nelson and Plosser, 1982), we extract common factors by

applying these methods to first differenced predictors to consistently estimate factors

(Bai and Ng, 2004). We also extract common factors from country-level global data

using up to 43 country-level data for prices and interest rates, motivated by exchange

rate determination theories such as Purchasing Power Parity (PPP), Uncovered In-

terest Parity (UIP), and Real Uncovered Interest Parity (RIRP). We then implement

an array of out-of-sample forecasting exercises utilizing these factor estimates, and

investigate what factors help improve the prediction accuracy for the exchange rate.

We evaluate the out-of-sample predictability of our factor models via the ratio of the

root mean squared prediction error (RRMSPE) criteria.

Our major findings are as follows. First, our factor-augmented forecasting models

outperform the random walk (RW) and autoregressive AR(1) type benchmark models

only when they utilize American factors. Korean factor-augmented models overall got

dominated by the AR model, although they still outperform the RW model when the

forecast horizon is one-year or longer. It is well known that bilateral exchange rates

relative to the US dollar tend to exhibit high cross-section correlations. That is, US
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common factors are likely to dominate dynamics of these exchange rates vis-à-vis dol-

lars over idiosyncratic components in each country such as Korea. Combining Korean

(idiosyncratic) factors with American factors slightly improves the forecasting perfor-

mance but failed to observe suffi ciently large improvement enough to outperform the

AR model.

Second, our models tend to perform better in short horizons when they are com-

bined with nominal/financial market factors in the US. On the other hand, American

real activity factor models outperform both the RW and AR models at longer hori-

zons. Put it differently, good short-run prediction performance of our models with the

total factors seems to inherit the superior performance of our models with financial

market factors, while superior long-run predictability seems to stem from information

from real activity factors. These results are consistent with the work of Boivin and

Ng (2006) in the sense that one may extract more useful information from subsets of

predictors.

Third, forecasting models with UIP motivated PLS factors perform well when the

US serves as the reference country. However, PPP and RIRP based factor models

are dominated by the AR model whichever country serves as the reference. Overall,

data-driven factor models seem to perform better than these propositon-based factor

models.

The rest of the paper is organized as follows. Section 2 carefully describes how

we estimate latent common factors via PC, PLS, and the LASSO for the real ex-

change rate when predictors obey an integrated process. Section 3 presents data

descriptions and preliminary statistical analysis. We also report some in-sample fit

analysis to investigate the source of latent common factors. In Section 4, we introduce

our factor-augmented forecasting models and evaluation schemes. Then, we present

and interpret our out-of-sample forecasting exercise results. We also report results

with alternative identification approaches, proposition-based models and nonstation-

ary forecasting models, in comparison with the data-driven factor forecasting models.

Section 5 concludes.

2 Methods of Estimating Latent Common Factors

This section explains how we estimate latent common factors by applying Principal

Component (PC), Partial Least Squares (PLS), and the Least Absolute Shrinkage

and Selection Operator (LASSO) to a large panel of nonstationary predictors.
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2.1 Principal Component Factors

Since the seminal work of Stock andWatson (2002), PC has been popularly used in the

current forecasting literature. We begin with this approach to show how to estimate

latent common factors when predictors are likely to be integratred I(1) processes.

Consider a panel of N macroeconomic T × 1 time series predictors/variables,

x = [x1,x2, ...,xN ], where xi = [xi,1, xi,2, ..., xi,T ]′ , i = 1, ..., N . We assume that each

predictor xi has the following factor structure. Abstracting from deterministic terms,

xi,t = λ
′

if
PC
t + εi,t, (1)

where ft =
[
fPC1,t , f

PC
2,t , · · · , fPCR,t

]′
is an R × 1 vector of latent time-varying common

factors at time t and λi = [λi,1, λi,2, · · · , λi,R]
′
denotes anR×1 vector of time-invariant

idiosyncratic factor loading coeffi cients for xi. εi,t is the idiosyncratic error term.

Following Bai and Ng (2004), we estimate latent common factors by applying

the PC method to first-differenced data. This is because, as shown by Nelson and

Plosser (1982), most macroeconomic time series variables are better approximated

by an integrated nonstationary stochastic process. Note that the PC estimator of ft

would be inconsistent if εi,t is an integrated process. First differencing (1), we obtain

the following factor structure.

∆xi,t = λ
′

i∆fPCt + ∆εi,t (2)

for t = 2, · · · , T . We first normalize the data, ∆x̃ = [∆x̃1,∆x̃2, ...,∆x̃N ], then

apply PC to ∆x̃∆x̃
′
to obtain the factor estimates ∆f̂PCt along with their associated

factor loading coeffi cients λ̂i.5 Naturally, estimates of the idiosyncratic component

are obtained by taking the residual, ∆ε̂i,t = ∆x̃i,t − λ̂
′

i∆f̂PCt . The level variable

estimates are recovered via cumulative summation as follows.

ε̂i,t =

t∑
s=2

∆ε̂i,s, f̂PCt =

t∑
s=2

∆f̂PCs (3)

It should be noted that this procedure yields consistent factor estimates even when

x includes some stationary I(0) variables. For example, assume that xj, j ∈ {1, ..., N}
is I(0). Differencing it once results in ∆xj, which is still stationary, I(−1). Therefore

the PC estimator remains consistent. Alternatively, one may continue to difference

5This is because PC is not scale invariant. We demean and standardize each time series.
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the variables until the null of nonstationarity hypothesis is rejected via a unit root

test.6 However, this may not be practically useful, when unit root tests provides

contradicting statistical inferences as the test specification (i.e., number of lags, see )

changes. See Cheung and Lai (1995) for related discussions.

2.2 Partial Least Squares Factors

We employ PLS for a scalar target variable qt, which is somewhat neglected in the

current literature. Unlike PC, the method of PLS generates target specific latent

common factors, which is an attractive feature. As Boivin and Ng (2006) pointed

out, PC factors might not be useful in forecasting the target when useful predictive

contents are in a certain factor that may be dominated by other factors.

PLS is motivated by the following linear regression model. Abstracting from

deterministic terms,

qt = ∆x
′

tβ + et, (4)

where ∆xt = [∆x1,t,∆x2,t, ...,∆xN,t]
′ is an N ×1 vector of predictor variables at time

t = 1, ..., T , while β is an N × 1 vector of coeffi cients. et is an error term. Again, we

first-difference the predictor variables assuming that xt is a vector of I(1) variables..

PLS is especially useful for regression models that have many predictors, when N

is large. To reduce the dimensionality, rewrite (4) as follows,

qt = ∆x
′

twθ + ut (5)

=∆fPLS
′

t θ + ut

where∆fplst =
[
∆fPLS1,t ,∆fPLS2,t , ...,∆fPLSR,t

]′
, R < N is an R×1 vector of PLS factors.

Note that ∆fPLSt is a linear combination of all predictor variables, that is,

∆fPLSt = w
′
∆xt, (6)

wherew = [w1,w2, ...,wR] is anN×R weighting matrix. That is,wr = [w1,r, w2,r, ..., wN,r]
′
,

r = 1, ..., R, is an N×1 vector of weights on predictor variables for the rth PLS factor,

∆fPLSr,t . θ is an R×1 vector of PLS regression coeffi cients. PLS regression minimizes

the sum of squared residuals from the equation (5) for θ instead of β in (4). It is

6This approach is used to construct the Fred-MD database.The Fred-MD is available at
https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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important to note that we do not utilize θ for our out-of-sample forecasting exercises

in the present paper. To make it comparable to PC factors, we simply utilize PLS

factors ∆fPLSt , then augment the benchmark forecasting model with estimated PLS

factors ∆f̂PLSt .

Among available PLS algorithms, see Andersson (2009) for a brief survey, we use

the one proposed by Helland (1990) that is intuitively appealing. Helland’s algorithm

to estimate PLS factors for a scalar target variable qt is as follows. First, ∆f̂PLS1,t is

pinned down by the linear combinations of the predictors in ∆xt.

∆f̂PLS1,t =

N∑
i=1

wi,1∆xi,t, (7)

where the loading (weight) wi,1 is given by Cov(qt,∆xi,t). Second, we regress qt and

∆xi,t on ∆f̂PLS1,t then get residuals, q̃t and ∆x̃i,t, respectively, to remove the explained

component by the first factor ∆f̂PLS1,t . Next, the second factor estimate ∆f̂PLS2,t is

obtained similarly as in (7) with wi,2 = Cov(q̃t,∆x̃i,t). We repeat until the Rth factor

∆f̂PLSR,t is obtained.

2.3 Least Absolute Shrinkage and Selection Operator Factors

We employ a shrinkage and selection method for linear regression models, the LASSO,

which is often used for sparse regression. Unlike ridge regression, the LASSO selects a

subset (xs) of predictor variables from x by assigning 0 coeffi cient to the variables that

are relatively less important in explaining the target variable. Putting it differently,

we implement the feature selection task using the LASSO.

The LASSO puts a cap on the size of the estimated coeffi cients for the ordinary

least squares (LS) driving the coeffi cient down to zero for some predictors. The

LASSO solves the following constrained minimization problem using L1-norm penalty

on β.

min
β

{
1

T

T∑
t=1

(qt −∆x
′

tβ)2
}
, s.t.

N∑
j=1

|βj| ≤ τ (8)

where ∆xt = [∆x1,t,∆x2,t, ...,∆xN,t]
′ is an N ×1 vector of predictor variables at time

t = 1, ..., T , β is an N × 1 vector of associated coeffi cients. As the value of tuning

(penalty) parameter τ decreases, the LASSO returns a smaller subset of x, setting

more coeffi cients to zero.
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Following Kelly and Pruitt (2015), we choose the value of τ to generate a certain

number of predictors by applying the LASSO to ∆x. We then employ the PC or

PLS approach to extract common factors, ∆f
PC/L
t or ∆f

PLS/L
t , out of the predictor

variables that are chosen by the LASSO regression. Similar to our PLS approach, we

use the LASSO method only to obtain the subset of predictors that is closely related

to the target.

3 In-Sample Analysis

3.1 Data Descriptions

We obtained a large panel of 126 American macroeconomic time series variables from

the FRED-MD database. We also obtained 192 Korean macroeconomic time series

data from the Bank of Korea. Korea has maintained a largely fixed exchange rate

regime for the dollar-won exchange rate, then switched to a heavily managed floating

exchange rate regime around 1980, and continue until the Asian Financial Crisis

occurred in 1997, which forced Korea to adopt a market based exchange rate regime.

We focus on the free floating exchange rate regime in 2000’s after the Korean econ-

omy fully recovered from the crisis. Observations are monthly and span from October

2000 to March 2019 to utilize reasonably many monthly predictors in Korea. We use

the consumer price index (CPI) to transform the nominal KRW/USD exchange rate

to the real exchange rate.

We categorized 192 Korean predictors into 13 groups. Groups #1 through #6

include real activity variables that include inventories and industrial productions,

while groups #7 to #13 are nominal/financial market variables such as interest rates

and prices. See Table 1 for more detailed information. Similarly, we categorized 126

American predictors into 9 groups of variables. Groups #1 through #4 represent the

real activity variables, while groups #5 through #9 are considered as financial sector

variable groups in the US. We log-transformed all quantity variables prior to estima-

tions other than those expressed in percent (e.g., interest rates and unemployment

rates).

Table 1 around here
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3.2 Some Preliminary Analysis

3.2.1 Unit Root Tests

We first implement some specification tests for our analysis. Table 2 presents the

augmented Dickey Fuller (ADF) test results for the real exchange rate (qt) and the

nominal exchange rate (st). The ADF test rejects the null of nonstationarity for

qt at the 5% significance level, while it fails to reject the null hypothesis for st at

any conventional level. Note that these results are consistent with standard mone-

tary models in international macroeconomics. For example, purchasing power parity

(PPP) is consistent with stationary qt and nonstationary st, because PPP implies a

cointegrating relationship between st and the relative price for qt in the long-run.

Next, we implement a panel unit root test for xAmt and xKrt , predictor variables in

the US and in Korea, respectively, employing the Panel Analysis of Nonstationarity

in Idiosyncratic and Common components (PANIC) analysis by Bai and Ng (2004).

The PANIC procedure estimates common factors via PC as explained in the previous

section, then test the null of nonstationarity for common factors via the ADF test with

an intercept. It also implements a panel unit root test for de-factored idiosyncratic

components of the data by the following statistic.

Pê =
−2
∑N

i=1 ln pêi − 2N

2N1/2
,

where pêi denotes the p-value of the ADF statistic with no deterministic terms for

de-factored ∆xi,t.7

Note that we also test the null hypothesis for the common factors of subsets of xt,

that is, real and financial sector variables separately. This is because we are interested

in the out-of-sample predictability of the common factors from these subsets of the

data. In what follows, we show American real activity factors include more long-

run predictive contents, whereas American financial market factors yield superior

predictability in the short-run, which is consistent with the implications of Boivin

and Ng (2006).

The PANIC test fails to reject the null of nonstationarity for all common factor

estimates at the 5% significance level with an exception of the second financial factor

in the US. Its panel unit root test rejects the null hypothesis that states all variables

7Pê statistic has an asymptotic standard normal distribution. The panel test utilizes the p-
value of the ADF statistics with no deterministic terms, because de-factored variables are mean-zero
residuals.
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are I(1) processes for all cases.8 However, nonstationary common factors eventually

dominate stationary dynamics of de-factored idiosyncratic components. Hence, test

results in Table 2 provide strong evidence in favor of nonstationarity in the predictor

variables xt, which is consistent with Nelson and Plosser (1982).

Table 2 around here

3.2.2 Persistence of the Real Exchange Rate

Exchange rates often exhibit very persistent dynamics, which is often indistinguish-

able from a unit root process due to the so-called observational equivalence problem.9

To investigate this possibility, we employ the grid bootstrap procedure by Hansen

(1999) to obtain median unbiased estimates for the persistence parameter of the real

exchange rates. For this purpose, consider the following AR(1) process for qt.10

qt+1 = α + βqt + εt+1 (9)

Define the following grid-t statistics at each fine grid point β ∈ [βmin, βmax].

tT (β) =
β̂ − β
se(β̂)

(10)

We implement 10, 000 nonparametric bootstrap simulations at 100 fine grid points

over [β̂±6×se(β̂)], where β̂ is the (biased) least squares estimate of β and se(β̂) is its

standard error, totaling 1 million bootstrap simulations, which generates the pth grid-

t bootstrap quantile functions, Q∗T,p(β).11 The median unbiased estimator (β̂MUE) is

then defined as,

β ∈ R : tT (β) = Q∗T,50%(β), (11)

8The alternative hypothesis is that there is at least one stationary variable.
9For example, it is virtually impossible to distinguish a near unit root process, say the persistence

parameter equals 0.999, from the unit root process via unit root tests.
10If qt is of higher order AR(p), p > 1, process, we can obtain the approximately median unbiased

estimator for β in the presence of nuisance parameters.
11Each function is evaluated at each grid point β, not at the point estimate. If they are evaluated

at the point estimate, the quantile functions correspond to the bootstrap-t quantile functions. See
Efron and Tibshirani (1994).
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while the 95% grid-t confidence interval can be obtained by the following.

[
β ∈ R : Q∗T,2.5%(β) ≤ tT (β) ≤ Q∗T,97.5%(β)

]
, (12)

We report point estimates β̂MUE as well as their corresponding 95% confidence

bands in Table 3. We also report annualized half-life point estimates,
(

ln(0.5)/ ln(β̂MUE)
)
×

12, and their bootstrap confidence bands. Results confirm a high degree of persis-

tence in both the real and nominal exchange rates. Half-life point estimates were

2.227 and 1.979 years for qt and st, respectively. Even though the half-life of st is

slightly shorter, we obtained more compact confidence band of qt in comparison with

that of st, which is consistent with the ADF test results in Table 2.12

Table 3 around here

3.3 Factor Model In-Sample Analysis

This section describes some in-sample properties of the factor estimates we discussed

in previous section. Figure 1 presents in-sample fit analysis for the KRW/USD real

exchange rate. Three figures in top row report cumulative R2 statistics of PC and

PLS factors obtained from all predictors, real activity predictors, and financial sector

predictors in the US, respectively from left to right. Three figures in bottom row

provide cumulative R2 values of Korean factors. Some interesting findings are as

follows.

First, the PLS factors (dashed lines) provide a notably better in-sample fit in

comparison with the performance of PC factors (solid lines). This is because PLS

utilizes the covariance between the target and the predictor variables, while PC fac-

tors are extracted from the predictor variables only. It is also interesting to see that

the cumulative R2 statistics of PLS factors overall exhibit a positive slope at a de-

creasing rate as the number of factors increases, whereas additional contributions

of PC factors show no such patterns. This is mainly due to the fact that our PLS

algorithm sequentially estimates orthogonalized common factors after removing ex-

planatory power of previously estimated factors. The PC method extracts common

12Greater ADF test statistic in absolute value of qt than that of st is due to smaller standard error
of qt than that of st.
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factors without considering the target variable, hence the contribution of additional

PC factors does not necessarily decrease.

Second, American factors greatly outperform Korean factors. Cumulative R2

values of American PLS factors reach well above 60%, while Korean PLS factors cu-

mulatively explain less than 40% of variations in the real exchange rate. Note that

Korean PC factors yield virtually no explanatory power. These findings imply that

Korean macroeconomic variables might not play an important role in explaining real

exchange rate dynamics, while American predictors contain substantial predictive

contents for it. We relate such findings with a strong degree of cross-section cor-

relations of many bilateral exchange rates relative to the US dollars, implying that

American factors better explain dynamics of exchange rates vis-à-vis US dollar than

idiosyncratic factors in local countries such as Korea.

Third, PLS factors from American real activity groups and financial variable

groups explain variations in the KRW/USD real exchange rate as well as those from

entire predictors. On the other hand, the contribution of PLS Korean factors mostly

stem from that of PLS Korean financial sector factors.

Figure 1 around here

Next, we investigate the source of the common factor estimates, employing the

marginal R2 analysis. That is, we regress each predictor onto the common factor

and record what proportion of the variation in each predictor can be explained by the

common factor. Results are reported in Figures 2 to 4 for the first common factor from

the entire predictors, real activity variables, and nominal/financial market variables,

respectively.

As can be seen in Figure 2, the marginal R2 statistics of the first American PC

factor (solid lines) are very similar to those of the first PLS American factor (bar

graphs). On the other hand, the marginal R2 statistics of the first Korean PC and

PLS factors are very different. More specifically, the marginal R2 statistics of the

Korean PLS factor are negligibly low in comparison with those of the PC factor.

Since PC factors are obtained only from the predictors with no reference on the

target variable, the marginal R2 values of the PC factor are expected to be high.

However, since PLS factors are estimated using the covariance of the target variable

and the predictor, low R2 statistics of the Korean PLS factor imply that Korean
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predictors are largely disconnected from the KRW/USD real exchange rate. This is

consistent with cumulative R2 statistics in Figure 1.

Note also that PLS American factors are more closely connected with groups #1

(industrial production) and #2 (labor market) than other groups. Put it differently,

the first PLS American factor seems to be strongly driven by these real activity

variables rather than financial market variables and other real activity variables.

Figure 2 around here

We investigate the source of the common factors in a more disaggregated level,

looking at the marginal R2 statistics of the real and financial market factors. Figure

3 reports the R2 statistics of the first American real activity factor. Again, we notice

the PLS and PC factors explain the variations in real activity variables similarly well.

We also note that the American real activity factor is mainly driven by industrial

production (Group #1) and labor market (Group #2) variables. Again, we note

that the PLS Korean real activity factor explains negligible variations in Korean real

activity variables, while the first PC factor exhibits reasonably high R2 statistics.

This again confirms our previous findings. Similar results were observed from the

marginal R2 analysis for the first financial market PLS and PC factors in Figure

4. The American PLS and PC nominal/financial market factors seem to be driven

mostly by CPIs and PPIs in the US.

Figures 3 and 4 around here

4 Out-of-Sample Prediction Performance

4.1 Factor-Augmented Forecasting Models

This section reports our out-of-sample forecast exercise results using factor-augmented

forecasting models for the KRW/USD real exchange rate. Based on the ADF test

results in Table 2, we employ the following stationary AR(1)-type stochastic process

for the real exchange rate. Abstracting from an intercept,

qt+j = αjqt + ut+j, j = 1, 2, .., k, (13)
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where αj is less than one in absolute value for stationarity. Note that we regress the

j-period ahead target variable (qt+j) directly on the current period target variable

(qt) instead of using a recursive forecasting approach with an AR(1) model, qt+1 =

αqt + εt+1, which implies αj = αj under this approach. With this specification, the

j-period ahead forecast is,

q̂ARt+j|t = α̂jqt, (14)

where α̂j is the least squares (LS) estimate of αj.

We augment (13) by adding factor estimates. That is, our factor augmented

stationary AR(1)-type forecasting model is the following.

qt+j = αjqt + β
′

j∆f̂ t + ut+j, j = 1, 2, .., k (15)

We again employ a direct forecasting approach by regressing qt+j directly on qt and

the estimated factors (∆f̂t). Note that (15) coincides with an exact AR(1) process

when j = 1, but extended by the factor covariates ∆f̂t. We obtain the following

j-period ahead forecast for the target variable,

q̂FARt+j|t = α̂jqt + β̂
′

j∆f̂t, (16)

where α̂j and β̂j are the LS coeffi cient estimates. Note also that (15) nests the

stationary benchmark model (13) when ∆f̂ t does not contain any useful predictive

contents for qt+j, that is, βj = 0.

We evaluate the out-of-sample predictability of our factor-augmented forecasting

model q̂FARt+j|t using a fixed-size rolling window scheme as follows.
13 We use the initial

T0 < T observations, {qt,∆xi,t}T0t=1, i = 1, 2, ..., N to estimate the first set of factors{
∆f̂t

}T0
t=1

using one of our data dimensionality reduction methods. We formulate the

first forecast q̂FART0+j|T0 , then calculate and keep the forecast error (ε
FAR
T0+j|T0). Then, we

add one next observation (t = T0+1) but drop one earliest observation (t = 2) for the

second round forecasting. That is, we re-estimate
{

∆f̂t

}T0+1
t=2

using {qt,∆xi,t}T0+1t=2 , i =

1, 2, ..., N , maintaining the same number of observations (T0) in order to formulate the

second round forecast, q̂FART0+j+1|T0+1. We repeat until we forecast the last observation,

qT . We implement the same procedure for the benchmark forecast q̂ARt+j|t by (14) in

13Rolling window schemes tend to perform better than the recursive method in the presence of
structural breaks. However, results with recursive approaches were qualitatively similar.
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addition to the no-change Random Walk (RW) benchmark q̂RWt+j|t = qt.14

We employ the ratio of the root mean square prediction error (RRMSPE) to

evaluate the out-of-sample prediction accuracy of our factor augmented models. That

is,

RRMSPE(j) =

√
1

T−j−T0+1
∑T−j

t=T0

(
εBMt+j|t

)2
√

1
T−j−T0+1

∑T−j
t=T0

(
εFARt+j|t

)2 , (17)

where

εBMt+j|t = qt+j − q̂BMt+j|t, εFt+j|t = qt+j − q̂FARt+j|t, BM = AR,RW (18)

Note that our factor models outperform the benchmark models when RRMSPE is

greater than 1.15

4.2 Prediction Accuracy Evaluations for the Real Exchange

Rate

We implement out-of-sample forecast exercises using a fixed-size (50% split point)

rolling window method with up to 4 (k) latent factor estimates.16 We obtained latent

common factors via the PLS, PC, and LASSO methods for large panels of macroeco-

nomic data in the US and in Korea.

Table 4 reports the RRMSPE statistics of our forecasting model q̂FARt+j|t relative

to q̂ARt+j|t and q̂RWt+j|t. Recall that our models outperform the RW model when the

RRMSPE is greater than one. The numbers in bold denote q̂FARt+j|t outperforms q̂
RW
t+j|t,

while the superscript ∗ means that q̂FARt+j|t outperforms both q̂
RW
t+j|t and q̂

AR
t+j|t.

17 Our

major findings are as follows.

First, American predictors yield superior predictive contents for the KRW/USD

real exchange rate, while Korean factor models perform relatively poorly. That is,

q̂FARt+j|t frequently outperform both the RW and AR models when augmented by Ameri-

can factors. The models with Korean factors overall got dominated by the AR model

although still outperform the RW model when the forecast horizon is one-year or

14Consider a random walk model, qBMRW
t+1 = qt+ ηt+1,where ηt+1 is a white noise process. There-

fore, j-period ahead forecast from this benchmark RW model is simply qt.
15Alternatively, one may employ the ratio of the root mean absolute prediction error (RRMAPE).

Results are overall qualitatively similar.
16We obtained qualitatively similar results with a 70% sample split point.
17That is, the AR benchmark model performs better thant the RW model.

16



longer. Recall that these empirical findings are consistent with our in-sample fit

analysis shown in the previous section. When we combine American factors with

Korean factors, the performance slightly improves, that is, the RRMSPE increases

a little, but failed to generate suffi ciently big improvement enough to outperform the

AR model.

Second, we observe that our American factor models tend to perform better at

short horizons when combined with nominal/financial market factors, while real activ-

ity factors improve the predictability at longer horizons. That is, the good prediction

performance of our models with the total factors, ∆f̂PLSt or ∆f̂PCt , at 1-period horizon

seem to inherit the superior performance of our models with financial market factors,

∆f̂PLS,Ft or ∆f̂PC,Ft . Similarly, superior long-run predictability seems to stem from

predictive contents of real activity factors, ∆f̂PLS,Rt or ∆f̂PC,Rt . These results imply

that factors obtained from subsets may provide more useful information than factors

from the entire predictor variables, which is consistent with Boivin and Ng (2006).

Table 4 around here

We also employ the LASSO to select the subsets of the predictor variables that

are useful to explain the target variable. The idea behind this is to estimate the

factors using fewer but more informative predictor variables as discussed by Bai and

Ng (2008). Following Kelly and Pruitt (2015), we adjust the tuning parameter τ in

(8) to choose a group of 30 predictors from each panel of macroeconomic variables in

the US and in Korea, while 20 predictors were chosen from each of the real activity

and the financial market variable groups. Then, we employed PLS and PC to estimate

up to 4 common factors to augment the benchmark AR model.

As we can see in Table 5, results are qualitatively similar to previous ones. Fi-

nancial factor augmented forecasting models tend to perform better for the 1-period

ahead forecasts, while real factors provide superior predictive contents for the real

exchange rate at longer horizons. Korean factor-augmented models perform overall

poorly relative to the AR model, although they still outperform the RW model when

the forecast horizon is 1-year or longer.

Table 5 around here
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4.3 Prediction Accuracy Evaluations for Exchange Rate Re-

turns

This section employs an alternative specification for the exchange rate. That is, we

evaluate the prediction accuracy of our factor models for exchange rate returns, moti-

vated by an assumption that exchange rates obey a nonstationary stochastic process.

Recall that this specification can be justified not only empirically (see Table 2) but

also theoretically by the monetary models of the nominal exchange rate. Assum-

ing an integrated process for st, we consider the following AR(1)-type model for the

exchange rate return (∆st). Abstracting from an intercept,

∆st+j = αj∆st + ut+j, j = 1, 2, .., k, (19)

where αj is less than one in absolute value for stationarity.18 Note that we regress the

j-period ahead target variable (∆st+j) directly on the current period exchange rate

return (∆st). Then, the j-period ahead forecast is,

∆ŝARt+j = α̂j∆st (20)

The corresponding factor augmented forecasting model is the following.

∆st+j = αj∆st + β
′

j∆f̂ t + ut+j, j = 1, 2, .., k (21)

which augment (19) by adding factor estimates (∆f̂t). The j-period ahead forecast

for the exchange rate return is,

∆ŝFARt+j|t = α̂j∆st + β̂
′

j∆f̂t, (22)

where α̂j and β̂j are the LS coeffi cient estimates.

Recall that (13) or (15) are motivated by a long-run cointegrating relationship

between the nominal exchange rate (st) and the relative price. On the other hand,

(19) or (22) describes a short-run stochastic process of the nominal exchange rate

return. In Table 6, therefore, we report the RRMSPE statistics of the 1-period ahead

out-of-sample forecasts of our factor models relative to the RW and AR models.

One interesting finding is that PLS American factor augmented models tend to

18That is, we assume that there are two eigenvalues for the level exchange rate, 1 and α1.
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perform better than PC factor models. The PLS models outperform both the RW and

AR models in 9 out of 12 cases, whereas the PC models outperform both benchmark

models only for 4 out of 12 cases. Korean factor models again perform poorly even

relative to the RW model.

Table 6 around here

Even though the ADF test in Table 2 provides empirical evidence in favor of

the stationarity of the real KRW/USD exchange rate, the persistence of the real

exchange rate is similar to the nominal exchange rate as can be seen in Table 3.

So we also experiment our forecasting exercises with the real exchange rate return

(∆qt). Table 7 reports qualitatively similar results. PLS American factors again yield

superior 1-period ahead forecast performance for ∆qt. PLS models outperform both

the benchmark models for 8 out of 12 cases, while PC models perform better than

those models only 4 out of 12.

Table 7 around here

4.4 Model Predictability with Proposition Based Global Fac-

tors

This section implements out-of-sample forecast exercises using models that utilize

global factors that are motivated by exchange rate determination theories: Purchasing

Power Parity (PPP); Uncovered Interest Parity (UIP); Real Interest Rate Parity

(RIRP).

4.4.1 Purchasing Power Parity: Relative Price Factors

We first consider PPP to motivate the strategy to identify common factors. When

PPP holds, there exists a cointegrating vector [1, 1] for the log nominal (bilateral)

exchange rate st (foreign currency price of 1 US dollar) and the log relative price

(pt − p∗t ), relpt, where pt and p∗t are the log prices in the US and in the foreign

country, respectively. That is, under PPP, the real exchange rate, qt = st + relpt, is
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stationary, while the nominal exchange rate and the relative price are nonstationary

I(1) processes. Note that our unit root test results in Table 2 are consistent with

PPP.

We obtained the Consumer Price Index (CPI) of 43 countries from the IFS data-

base including 18 euro-zone countries. Assuming that the US is the home/reference

country, we constructed 42 relative prices (pt − p∗t ), then estimated the first com-

mon factor from these relative prices after taking the first difference (∆pt −∆p∗t ) or

(πt − π∗t ), since the relative price is an integrated process. We also extracted the

common factor from the 42 relative prices with Korea as the reference country.19

We report j-period ahead out-of-sample predictability exercise results (50% split

point) using one factor models when each of the US and Korea serves as the reference

country in Table 8. Results imply overall poor performance of PPP motivated factor

models irrespective of the choice of the reference country.

Our factor models outperform the RW model when the forecast horizon is 1-year

or longer, which is consistent with PPP that is a long-run proposition. However,

our PPP factor models rarely beat the AR benchmark model nor our data-driven

macroeconomic factor models presented in the previous section. It is not surprising

to find similar performance of the Korean reference factor model as the American

factor model, since they include fundamentally similar information of CPIs in 43

countries.

Table 8 around here

4.4.2 Uncovered Interest Parity: Interest Rate Spread

The second proposition we adopt is Uncovered Interest Parity (UIP). Abstracting

from risk premium, UIP states the following.

∆st+1 = i∗t − it + εt+1, (23)

19For the group of developed countries, we include 11 euro-zone countries (Austria, Belgium,
Finland, France, Germany, Greece, Italy, Luxembourg, Netherlands, Portugal, Spain) and 8 non-
euro-zone countries (Canada, Denmark, Japan, Singapore, Switzerland, Sweden, United Kingdom,
United States). All data are obtained from the IFS database with an exception of Singapore. We
obtained the Singapore CPI from the Department of Statistics of Singapore. In addition to the group
of 19 developed countries, we added 7 the rest of euro-zone countries (Cyprus, Estonia, Ireland,
Latvia, Lithuania, Slovakia, Slovenia) except Malta, and 17 non-euro-zone countries (Brazil, China,
Chile, Colombia, Czech Republic, Hong Kong, Hungary, India, Indonesia, Israel, Korea, Malaysia,
Mexico, Poland, Romania, Russia, Saudi Arabia).
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where ∆st+1 is the nominal exchange rate return, that is, appreciation (depreciation)

rate of the home (foreign) currency, while it and i∗t are nominal short-run interest

rates in the home and foreign countries, respectively. εt+1 = ∆st+1 − Et∆st+1 is the
mean-zero (Etεt+1 = 0) rational expectation error term.

Motivated by (23), we obtained 18 international short-term interest rates from

the FRED and the OECD database to construct nominal interest rate spreads by

subtracting US interest rate (it) from the national interest rate (i∗t ).
20 We estimate

the first common factor via PLS and PC from the balanced panel of 17 interest rate

spreads relative to American interest rate. We took the first difference of the spreads

to make sure we estimate factors consistently.21 Similarly, we estimated the first

common factor from 17 interest rate spreads relative to Korean interest rate.

Table 9 reports the RRMSPE statistics of the j-period ahead out-of-sample fore-

casts for the nominal exchange rate return (∆st) using UIP motivated factors. Amer-

ican PLS factor forecasting models perform overall well relative to both benchmark

models. It is interesting that our short-run proposition based forecasting models per-

form fairly well both in the short-run and in the long-run. However, Korean factor

models overall performed poorly.

Table 9 around here

4.4.3 Real Interest Rate Parity: Real Interest Rate Spread

The last proposition we employ is Real Interest Rate Parity (RIRP), which combines

PPP with UIP. Taking the first difference to the PPP equation (qt = st + pt − p∗t ) at
time t+ 1,

∆qt+1 = ∆st+1 + πt+1 − π∗t+1 (24)

Combining (23) and (24), we obtain the following expression for RIRP.

∆qt+1 = r∗t − rt + εt+1, (25)

20For the group of developed countries, we include 11 euro-zone countries (Austria, Belgium, Fin-
land, France, Germany, Greece, Italy, Luxembourg, Netherlands, Portugal, Spain) and 7 non-euro-
zone countries (Canada, Denmark, Japan, Switzerland, Sweden, United Kingdom, United States).
All data are obtained from the OECD database and the FRED.
21The PANIC test provides strong evidence of nonstationarity for the interest rate spreads.
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where rt = it− πt+1 and r∗t = i∗t − π∗t+1 are the ex post real interest rates in the home
and foreign country, respectively.

Using international CPIs and short-run interest rates we used, we estimated the

first common factors by applying PLS and PC to a panel of 17 real interest rate

spreads (r∗t − rt) without taking differences. This is because we obtained very strong
evidence in favor of stationarity for real interest rate spreads.22 We report results

in Table 10. Our factor augmented forecasting models outperformed the RW model,

but performed poorly relative to the AR benchmark model.

Table 10 around here

5 Concluding Remarks

In this paper, we propose parsimonious factor-augmented forecasting models for the

KRW/USD real exchange rate in a data rich environment. We apply an array of data

dimensionality reduction methods to large panels of 125 American and 192 Korean

monthly frequency macroeconomic time series data from October 2000 to March 2019.

In addition to Principal Component (PC) analysis that has been frequently used in

the current literature, we employ the Partial Least Squares (PLS) approach and the

Least Absolute Shrinkage and Selection Operator (LASSO) combined with PC and

PLS to extract target-specific common factors for the KRW/USD exchange rate.

We augment benchmark forecasting models with estimated common factors to

formulate out-of-sample forecasts. Then, using the ratio of the root mean squared

prediction error (RRMSPE) criteria, we evaluate the predictive accuracy of our

proposed models for the real exchange rate relative to the random walk (RW) and

the stationary autoregressive (AR) models.

Our forecasting models outperform both the RW and the AR benchmark models

only when we utilize latent common factors from American predictors. In particular,

our models that utilize real activity factors perform well at longer horizons, while

nominal/financial market factors help improve the prediction performance at short

horizons. The superior performance with factors from subset of predictors is in line

with the work of Boivin and Ng (2006) who demonstrated the importance of relevant

22The PANIC test results are available upon request.
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common factors for the target variable. Models with Korean factors overall perform

poorly relative to the AR model, while they still outperform the RW model when the

forecast horizon is 1-year or longer.

We also implement forecasting exercises using global factors that are motivated

by exchange rate determination theories such as Purchasing Power Parity (PPP),

Uncovered Interest Parity (UIP), and Real Uncovered Interest Parity (RIRP). Fore-

casting models with UIP common factors turn out to perform fairly well when the

US serves as the reference country, while models with either PPP or RIRP factors

perform overall poorly whichever is used for the reference country.
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Table 1. Macroeconomic Data Descriptions

American Data
Group ID Data ID Data Description
#1 1-16 Industrial Production Indices
#2 17-47 Labor Market Variables
#3 48-57 Housing Inventories
#4 58-65 Manufacturers’Consumption/ New Orders
#5 66-79 Monetary Aggregates
#6 80-96 Domestic Interest Rates
#7 97-116 Producer/Consumer Prices
#8 117-121 Stock Indices
#9 122-126 Exchange Rates

Korean Data
Group ID Data ID Data Description
#1 1-27 New Orders
#2 28-34 Inventory
#3 35-52 Housing
#4 53-74 Retails/Manufacturing
#5 75-87 Labor
#6 88-98 Industrial Production
#7 99-102 Business Condition
#8 103-114 Stock Indices
#9 115-127 Interest Rates
#10 128-145 Exports/Imports Prices
#11 146-163 Prices
#12 164-180 Money
#13 181-192 Exchange Rates

Note: We obtained the American data from the FRED-MD website. The Korean Data was
obtained from the Bank of Korea.
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Table 2. Unit Root Test Results

ADF Test
qt −2.966†

(0.038)
st −1.953

(0.308)

PANIC Test
xAmt xKrt

All variables fPC1,t −2.519
(0.100)

fPC1,t 1.186
(0.998)

fPC2,t −1.270
(0.641)

fPC2,t −2.085
(0.237)

Pê 11.341‡
(0.000)

Pê 16.667‡
(0.000)

Real Variables fPC,R1,t −2.443
(0.124)

fPC,R1,t −0.634
(0.868)

fPC,R2,t −2.393
(0.133)

fPC,R2,t −2.057
(0.254)

Pê 5.763‡
(0.000)

Pê 15.552‡
(0.000)

Financial Variables fPC,F1,t −1.888
(0.326)

fPC,F1,t 1.250
(0.999)

fPC,F2,t −3.437‡
(0.009)

fPC,F2,t −1.544
(0.512)

Pê 6.425‡
(0.000)

Pê 8.711‡
(0.000)

Note: qt and st are the CPI-based real bilateral KRW/USD exchange rate and the nominal
bilateral KRW/USD exchnage rate, respectively. PLS produces target specific factors for qt and
st separately, while PC yields the same common factors independent on the target variable.
Real variables are from group #1 through #4 for American factors and groups #1 through #7
for Korean factors, while financial variables include group #5 through #9 for American factors
and groups #8 through #13 for Korean factors. The augmented Dickey-Fuller (ADF ) test
reports the ADF t -statitics when an intercept is included. P -values are in parenthesis. For the
PANIC test results, we report the ADF t -statistics with an intercept for each common factor
estimate. Pê denotes the panel test statistics from the de-factored idiosyncratic components. ‡
and † denote a rejection of the null hypothesis at the 1% and 5% level, respectively.
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Table 3. Median Unbiased Estimates of the Persistence Parameter

β C.I HL C.I
qt 0.974 [0.938, 1.006] 2.227 [0.905,∞)
st 0.971 [0.932, 1.006] 1.979 [0.822,∞)

Note: qt and st are the CPI-based real bilateral KRW/USD exchange rate and the nominal
bilateral KRW/USD exchnage rate, respectively. β denotes the persistent parameter from an
autoregressive process of degree 1, AR(1), specificiation of each real exchange rate. We corrected
the median bias following Hansen’s (1999) grid bootstrap technique. We employed 100 fine
evenly spaced grid points on the interval [β̂ ± 6× se(β̂)], where β̂ is the least squares estimate
of β and se is its standard error. 10,000 nonparametric bootstrap simulations were done at
each grid point to construct quantile function estimates. HL denotes the implied half-life point
estimate in years. C.I denotes the 95% median unbiased confidence band.
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Table 4. Out-of-Sample Predictability for the Real Exchange Rate

American Factors
j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 1.0115∗ 1.0077 1.0074 1.0251∗ 1.0088∗ 1.0144∗

2 1.0355∗ 0.9971 1.0198∗ 1.0148∗ 1.0023 1.0155∗

3 1.0266∗ 0.9941 1.0223∗ 1.0142∗ 0.9680 1.0223∗

4 0.9985 0.9882 1.0388∗ 1.0262∗ 0.9575 1.0528∗

12 1 1.3440∗ 1.3611∗ 1.2499∗ 1.3194∗ 1.3375∗ 1.2380
2 1.3389∗ 1.3469∗ 1.0965 1.2573∗ 1.3375∗ 1.2352
3 1.2421∗ 1.2246 1.0243 1.2572∗ 1.3308∗ 1.1217
4 1.2625∗ 1.2046 1.0128 1.1701 1.2850∗ 1.0164

36 1 1.4269∗ 1.4466∗ 1.2710 1.3742∗ 1.4271∗ 1.2409
2 1.2736 1.3948∗ 1.2316 1.3142 1.3980∗ 1.2585
3 1.2232 1.4229∗ 1.2715 1.3225 1.3882∗ 1.2300
4 1.2029 1.4147∗ 1.2980 1.2430 1.3593 1.2719

Korean Factors
j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 0.9006 1.0029 0.9382 0.6836 0.8443 0.9646
2 0.6329 0.9441 0.9450 0.4931 0.8644 0.2871
3 0.4880 0.8965 0.5315 0.2348 0.7819 0.1707
4 0.4316 0.8660 0.6469 0.2275 0.6987 0.1362

12 1 1.2607∗ 1.2162 1.2698∗ 1.2381 1.2422∗ 1.2074
2 1.2431∗ 1.1635 1.2362 1.2067 1.2433∗ 1.1877
3 1.2380 1.0719 1.2288 1.2159 1.2298 1.2485∗

4 1.2203 1.0664 1.2545∗ 1.2289 1.2084 1.2318
36 1 1.3737∗ 1.3787∗ 1.3883∗ 1.3752∗ 1.3652 1.3797∗

2 1.3498 1.2832 1.3850∗ 1.3843∗ 1.3425 1.3809∗

3 1.1916 1.1056 1.3377 1.3847∗ 1.3435 1.3687
4 1.1716 1.0641 1.3359 1.3367 1.3177 1.3611

American and Korean Factors
j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 2 0.9469 1.0082∗ 0.9542 0.8242 0.8925 0.9781
4 0.9441 0.9419 0.8800 0.4030 0.8900 0.2400
6 0.5604 0.8730 0.5753 0.2230 0.7975 0.1871
8 0.5408 0.8029 0.9025 0.2096 0.7784 0.1803

12 2 1.3503∗ 1.3203∗ 1.2704∗ 1.3054∗ 1.3351∗ 1.1799
4 1.3055∗ 1.2448∗ 1.0548 1.1873 1.3342∗ 1.1753
6 1.1377 1.0888 0.9167 1.1621 1.3277∗ 1.1377
8 1.1442 1.0450 0.9340 1.1567 1.2331 0.9798

36 2 1.4278∗ 1.4534∗ 1.2882 1.3655 1.4190∗ 1.2216
4 1.2430 1.3358 1.2300 1.2845 1.3804∗ 1.2352
6 1.1017 1.1954 1.2246 1.2733 1.3578 1.2321
8 1.0833 1.1244 1.2869 1.1854 1.3005 1.2677

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. Superscript R and F mean
that factors were estimated from real and financial variables, respectively. RRMSPE statistics
in bold denote that the competing model outperforms the benchmark RW model. ∗ denotes
that the competing model outperforms the benchmark AR model as well as the RW model.
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Table 5. Out-of-Sample Predictability with LASSO for the Real Exchange Rate

American Factors
j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 1.0162∗ 1.0218∗ 1.0188∗ 1.0392∗ 1.0184∗ 1.0329∗

2 1.0388∗ 0.9849 1.0261∗ 1.0451∗ 1.0160 1.0520∗

3 1.0387∗ 0.9807 1.0379∗ 1.0419∗ 1.0278∗ 1.0474∗

4 1.0502∗ 0.9933 1.0236∗ 1.0456∗ 1.0145∗ 1.0411∗

12 1 1.2145 1.3792∗ 1.1614 1.2515∗ 1.3354∗ 1.2413
2 1.1729 1.3456∗ 1.1068 1.2305 1.3549∗ 1.1742
3 1.1734 1.3395∗ 1.1350 1.0718 1.3060∗ 1.1282
4 1.1316 1.2497∗ 1.1100 1.0864 1.2917∗ 1.1534

36 1 1.2970 1.5208∗ 1.2753 1.3555 1.4750∗ 1.3515
2 1.3264 1.4849∗ 1.3718 1.2840 1.4654∗ 1.3337
3 1.2664 1.4729∗ 1.3596 1.3029 1.4816∗ 1.3415
4 1.2589 1.4242∗ 1.2998 1.2794 1.4763∗ 1.3809∗

Korean Factors
j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 0.9735 1.0022 0.9773 0.5423 0.9743 0.5820
2 0.4596 0.9929 0.6262 0.5492 0.9646 0.3462
3 0.5694 0.9760 0.6352 0.3133 0.9632 0.2832
4 0.4563 0.9744 0.6065 0.2911 0.9286 0.2604

12 1 1.2271 1.2144 1.2199 1.1532 1.2434∗ 1.1571
2 1.1769 1.2247 1.1618 1.1656 1.2418∗ 1.1594
3 1.1812 1.2154 1.1611 1.1720 1.2274 1.1600
4 1.1718 1.2148 1.1536 1.1695 1.1975 1.1220

36 1 1.3667 1.2937 1.3728 1.3919∗ 1.3654 1.3920∗

2 1.3624 1.3071 1.3783∗ 1.3936∗ 1.3648 1.3919∗

3 1.3794∗ 1.2798 1.2943 1.4058∗ 1.3316 1.3155
4 1.3342 1.2690 1.2935 1.2495 1.3285 1.2894

American and Korean Factors
j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 2 0.9954 1.0169∗ 0.9854 0.5882 0.9919 0.6359
4 0.5416 0.9679 0.7121 0.6120 0.9696 0.4283
6 0.6234 0.9530 0.6667 0.3999 0.9695 0.3120
8 0.5272 0.9706 0.6231 0.3538 0.9193 0.2736

12 2 1.2325 1.3289∗ 1.1751 1.1768 1.3298∗ 1.1787
4 1.0980 1.3127∗ 1.0330 1.1387 1.3483∗ 1.0954
6 1.0936 1.2745∗ 1.0212 1.0291 1.2780∗ 1.0795
8 1.0107 1.1975 0.9970 1.0501 1.2380 1.0466

36 2 1.2664 1.4650∗ 1.2462 1.3389 1.4520∗ 1.3508
4 1.2798 1.4418∗ 1.3483 1.2810 1.4358∗ 1.3306
6 1.2135 1.3949∗ 1.2337 1.2589 1.4167∗ 1.3051
8 1.2523 1.3107 1.1827 1.1572 1.4132∗ 1.2956

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. Superscript R and F mean
that factors were estimated from real and financial variables, respectively. RRMSPE statistics
in bold denote that the competing model outperforms the benchmark RW model. ∗ denotes
that the competing model outperforms the benchmark AR model as well as the RW model.
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Table 6. 1-period ahead Predictability for the Nominal Exchange Rate Return

American Factors
#Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1.0371∗ 1.0318∗ 1.0309∗ 1.0281∗ 1.0225 1.0249
2 1.0455∗ 1.0252 1.0576∗ 1.0154 1.0282∗ 1.0232
3 1.0703∗ 1.0153 1.0685∗ 1.0158 0.9877 1.0233
4 1.0552∗ 0.9987 1.0680∗ 1.0312∗ 0.9771 1.0367∗

Korean Factors
#Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 0.9191 0.9839 1.0030 0.5361 0.7685 0.9923
2 0.7552 1.0042 0.5207 0.5829 0.9124 0.6725
3 0.5044 0.9567 0.9014 0.2566 0.8513 0.2561
4 0.4619 0.7603 0.6702 0.2698 0.6652 0.2733

American and Korean Factors
#Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

2 0.9072 0.9890 1.0132 0.5436 0.8024 0.9831
4 0.7558 0.9954 0.5552 0.4477 0.9440 0.5707
6 0.4049 0.9517 0.6317 0.2581 0.8699 0.2555
8 0.3370 0.7699 0.4400 0.2403 0.7215 0.3216

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. Superscript R and F mean
that factors were estimated from real and financial variables, respectively. RRMSPE statistics
in bold denote that the competing model outperforms the benchmark RW model. ∗ denotes
that the competing model outperforms the benchmark AR model as well as the RW model.
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Table 7. 1-period ahead Predictability for the Real Exchange Rate Return

American Factors
#Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1.0290∗ 1.0260∗ 1.0201∗ 1.0198∗ 1.0151 1.0150
2 1.0358∗ 1.0215∗ 1.0404∗ 1.0061 1.0276∗ 1.0123
3 1.0598∗ 1.0086 1.0568∗ 1.0061 0.9895 1.0132
4 1.0440∗ 1.0004 1.0554∗ 1.0294∗ 0.9750 1.0249∗

Korean Factors
#Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 0.8899 0.9832 0.9923 0.6676 0.8165 0.8348
2 0.8123 1.0050 0.6365 0.4295 0.8601 0.5331
3 0.3470 0.9574 0.7707 0.2443 0.7875 0.2736
4 0.4283 0.7916 0.6183 0.2624 0.6692 0.2924

American and Korean Factors
#Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

2 0.8903 0.9908 0.9958 0.6806 0.8459 0.8232
4 0.8484 1.0052 0.6932 0.3501 0.8963 0.4958
6 0.3470 0.9491 0.5696 0.2462 0.8307 0.2670
8 0.2975 0.7909 0.3985 0.2195 0.7457 0.2962

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. Superscript R and F mean
that factors were estimated from real and financial variables, respectively. RRMSPE statistics
in bold denote that the competing model outperforms the benchmark RW model. ∗ denotes
that the competing model outperforms the benchmark AR model as well as the RW model.
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Table 8. PPP Based Models for the Real Exchange Rate

American Reference Korean Reference
j #Factors ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt
1 1 1.0061 1.0057 0.9678 0.9670

2 0.9905 0.9866 0.9639 0.9710
3 0.9831 0.9697 0.9566 0.9636

12 1 1.2381∗ 1.2372 1.2422∗ 1.2441∗

2 1.1760 1.2265 1.2108 1.2153
3 1.1868 1.1836 1.0970 1.1617

24 1 1.4852 1.4836 1.5278∗ 1.5213
2 1.4995 1.4423 1.4262 1.4693
3 1.4894 1.4652 1.2865 1.3131

36 1 1.3415 1.3364 1.4172∗ 1.4151∗

2 1.3406 1.3401 1.3710 1.2233
3 1.3167 1.3140 1.0971 1.2321

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗ denotes that the
competing model outperforms the benchmark AR model as well as the RW model.
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Table 9. UIP Based Models for the Nominal Returns

American Factors Korean Factors
j #Factors ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt
1 1 1.0357∗ 1.0317∗ 1.0161 1.0121

2 1.0529∗ 1.0258 1.0334∗ 1.0264∗

3 1.0261∗ 1.0237 1.0166 1.0250
12 1 0.9983 0.9980 0.9990 0.9984

2 0.9969 0.9988 0.9941 0.9943
3 0.9973 0.9930 0.9938 0.9947

24 1 1.0028∗ 1.0026∗ 0.9975 0.9974
2 1.0019∗ 0.9994 0.9968 0.9994
3 0.9871 1.0040∗ 0.9788 1.0005∗

36 1 1.0257∗ 1.0244∗ 0.9967 0.9959
2 1.0194∗ 1.0281∗ 0.9872 0.9944
3 1.0157∗ 1.0231∗ 0.9781 1.0313∗

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗ denotes that the
competing model outperforms the benchmark AR model as well as the RW model.
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Table 10. RIRP Based Models for the Real Exchange Rate
American Factors Korean Factors

j #Factors ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt
1 1 1.0057 1.0066 0.9833 0.9792

2 1.0042 0.9882 0.9742 0.9836
3 0.9924 0.9754 0.9697 0.9631

12 1 1.2000 1.2311∗ 1.2370∗ 1.2505∗

2 1.1999 1.2290∗ 1.2233 1.2444∗

3 1.1701 1.2450∗ 1.1503 1.2495∗

24 1 1.5022 1.4930 1.5172∗ 1.5287∗

2 1.4630 1.4182 1.5192∗ 1.5539∗

3 1.4098 1.5244∗ 1.4452 1.3247
36 1 1.4415∗ 1.3576 1.3535 1.3523

2 1.3619 1.3440 1.3451 1.1982
3 1.2887 1.3696 1.1703 1.0686

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗ denotes that the
competing model outperforms the benchmark AR model as well as the RW model.
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Figure 1. Cumulative R2 Analysis

Note: We regress the real exchange rate on each factor and obtain the R2 statistics. Since

we use orthogonalized factors, we report the cumulative R2 statistics.Dotted lines are for PLS

factors and solid lines are for PC factors.
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Figure 2. Marginal R2 Analysis: Total Factors

American Factors

Korean Factors

Note: We report the R2 statistics that were obtained by regressing each predictor on the

common factor estimate. That is, the horizontal axis is the predictor IDs. Solid lines are for

PC factors, while bar graphs are for PLS factors.
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Figure 3. Marginal R2 Analysis: Real Activity Factors

American Factors

Korean Factors

Note: We report the R2 statistics that were obtained by regressing each predictor on the

common factor estimate. That is, the horizontal axis is the predictor IDs. Solid lines are for

PC factors, while bar graphs are for PLS factors.
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Figure 4. Marginal R2 Analysis: Nominal/Financial Factors

American Factors

Korean Factors

Note: We report the R2 statistics that were obtained by regressing each predictor on the

common factor estimate. That is, the horizontal axis is the predictor IDs. Solid lines are for

PC factors, while bar graphs are for PLS factors.
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