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Abstract

We propose factor-based out of sample forecasting models for US dollar

real exchange rates. We estimate latent common factors employing an array

of data dimensionality reduction approaches that include the Principal Com-

ponent Analysis, Partial Least Squares, and the LASSO for a large panel of

125 monthly frequency US macroeconomic time series data. We augment two

benchmark models, a stationary autoregressive model and the random walk

model, with estimated common factors to formulate out-of-sample forecasts of

the real exchange rate. Empirical findings demonstrate that our factor aug-

mented models outperform the benchmark models at longer horizons when

factors are extracted from real activity variables excluding financial sector vari-

ables. Factors obtained from financial market variables overall play a limited

role in forecasting. Our data-driven models tend to perform better than models

with international factors that are motivated by exchange rate determination

theories.
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1 Introduction

This paper presents factor augmented out-of-sample forecasting models for dollar real

exchange rates in a data rich environment during the post-Bretton Woods system

era. We demonstrate that our models outperform the benchmark models that are

commonly used in the current literature at longer horizons, when factors are extracted

from real activity variables excluding financial market predictors.

In their seminal paper, Meese and Rogoff (1983) demonstrate that the random

walk (RW) model performs well in predicting the nominal exchange rate in comparison

with models that utilize economic fundamental variables, which are motivated by

exchange rate determination theories. Engel and Hamilton (1990), however, report

the better predictability of their nonlinear models over the RW, although their findings

are still at odds with uncovered interest parity (UIP). Cheung, Chinn, and Pascual

(2005) update Meese and Rogoff’s work, showing that exchange rate models still

do not consistently outperform the RW model in out-of-sample forecasting at any

forecast horizons. In relation to such a disconnect between the exchange rate and

its macroeconomic fundamentals, Engel and West (2005) provide an interesting point

that asset prices such as the exchange rate can behave similar to a RW process as

the discount factor approaches one, even when those prices are still consistent with

models of asset pricing.1

On the other hand, a number of studies reported evidence of greater predictability

of exchange rate models over the RWmodel at longer horizons. Using regression mod-

els of multiple-period changes (long differencing) in the exchange rate on the deviation

of the exchange rate from its fundamentals, Mark (1995) reports overall superior long-

horizon predictability of fundamentals for the exchange rate. Chinn and Meese (1995)

also show that exchange rate models can beat the RW at long horizons. Lothian and

Taylor (1996) report good out-of-sample predictability of fundamentals utilizing sim-

ple stationary models of the real exchange rate using over two century-long annual

frequency data. Groen (2005) reports that the monetary fundamentals-based com-

mon long-run model outperforms the RW model as well as standard cointegrated

1Many researchers provide panel evidence of monetary models that connect to exchange rate
dynamics. See for example, Rapach and Wohar (2004), Groen (2000), and Mark and Sul (2001).
Also, Mark (2009), Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008), Engel and West (2006), and
Clarida and Waldman (2008) explored empirical performance of the models based on Taylor-rule
fundamentals.
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vector autoregressive (VAR) model-based forecasts at 2 to 4 year horizons. Engel,

Mark, and West (2008) also show that out-of-sample predictability can be enhanced

by focusing on panel estimation and long-horizon forecasts.

There are quite a few researchers who show that Taylor Rule fundamentals provide

useful predictive contents for the exchange rate. See among others, Engel, Mark,

and West (2008), Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008), Molodtsova

and Papell (2009), Molodtsova and Papell (2013), and Ince, Molodtsova, and Papell

(2016). In a related work, Wang and Wu (2012) show the superior out-of-sample

interval predictability of the Taylor Rule fundamentals at longer horizons. See also

Rossi (2013) for a survey of researches that demonstrates the importance of Taylor

Rule fundamentals in understanding exchange rate dynamics.

More recently, a group of researchers started using a large panel of time series

data for understanding exchange rate dynamics. Since the pioneering work of Stock

and Watson (2002), there has been an influx of papers that use factor analysis to

perform predictions of macroeconomic variables, utilizing latent common factors via

principal components (PC) analysis. For instance, Engel, Mark, and West (2015)

use cross-section information from PC factors that are obtained from a panel of 17

bilateral exchange rates vis-à-vis the US dollar, and show that factor based forecasting

models often outperform the random walk model during the post-1999 sample period.

They also show that the dollar factor combined with Purchasing Power Parity (PPP)

factors perform well. Chen, Jackson, Kim, and Resiandini (2014) use PC to extract

latent common factors from 50 commodity prices, motivated by the fact that world

commodities are priced in dollars. Their first common factor turns out to be closely

related with the dollar exchange rate. They show that the first common factor yields

superior out-of-sample predictive contents for the dollar exchange rate.

Verdelhan (2018) proposes to use the two risk factors (dollar factor and carry fac-

tor) that are constructed from portfolios of international currencies for better under-

standing exchange rate dynamics. Greenaway-McGrevy, Mark, Sul, and Wu (2018)

demonstrate that exchange rates are mainly driven by a dollar and an euro factor but

not the carry factor. They show that the out-of-sample prediction performance from

their dollar-euro factor model dominates the RW (no change) model. Ca’Zorzi, Ko-

ciecki, and Rubaszek (2015) use a structural Bayesian vector autoregression (SBVAR)

and demonstrate that forecasting on the basis of real interest rate and convergence

to PPP holds good in the medium horizons, although it is still diffi cult to beat the
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RW model in the short-run.

Note that PC obtains common factors solely from a group of predictor variables.

Boivin and Ng (2006), however, pointed out that the performance of the PC method

may be poor in forecasting the target variable if useful predictive contents are in a

certain factor that may be dominated by other factors. In order to address this issue,

we employ the partial least squares (PLS) method which is proposed by Wold (1982).

This method utilizes the covariance between the target and predictor variables to gen-

erate target-specific factors. See Kelly and Pruitt (2015) and Groen and Kapetanios

(2016) for some comparisons between the PC and PLS approaches. Similar to Bai

and Ng (2008) and Kelly and Pruitt (2015), we also use the Least Absolute Shrinkage

and Selection Operator (LASSO) to select a target-specific group of variables among

the full dataset to extract more relevant factors for the target.

This paper first estimates latent common factors for the dollar real exchange

rate from a large panel U.S. macroeconomic time series data during the post-Bretton

Woods system, then augment both the stationary and non-stationary benchmark fore-

casting models with the factor estimates. We employ an array of data dimensionality

reduction approaches including aforementioned methods of PC and PLS as well as the

LASSO in combination with PC and PLS. As shown by Nelson and Plosser (1982),

most macroeconomic data are better approximated with a non-stationary stochastic

process. Recognizing this, we apply these methods to first differenced predictors in

order to obtain factor estimates consistently. See Bai and Ng (2004) for detailed ex-

planations. In addition, we extract common factors from country-level data motivated

by exchange rate determination theories including Purchasing Power Parity (PPP),

Uncovered Interest Parity (UIP), and Real Uncovered Interest Parity (RIRP). We

evaluate the out-of-sample predictability of our factor augmented forecasting models

using the ratio of the root mean squared prediction error (RRMSPE) criteria.

Our major findings are as follows. First, stationary factor models perform better

than the random walk based factor models, although conventional unit root tests tend

to be in favor of non-stationarity of the real exchange rate.

Second, forecasting models augmented with real activity factors tend to outper-

form the models that utilize factors from all predictor variables at longer horizons.

This is in line with the work of Boivin and Ng (2006) who demonstrate that more

data are not necessarily useful. On the other hand, factors from financial variables

provide overall very limited predictive contents.
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Third, labor market variables are identified as the main source of superior out-of-

sample predictive contents among real activity variables. Excluding labor variables,

real factor models lose their predictability substantially. On the other hand, price

variables seem to cause the poor performance of financial factors. Factors from non-

price financial predictors substantially improve the prediction performance.

Fourth, the models with UIP factors perform well in the short-run horizons, while

other models with PPP and RIRP factors overall perform poorly in comparison with

our data-driven factor augmented forecasting models.

The rest of the paper is organized as follows. Section 2 describes our factor

augmented forecasting models for the real exchange rate. We also describe our fac-

tor estimation strategies and the evaluation method via a fixed-size rolling window

scheme. Section 3 presents data descriptions and some preliminary statistical analy-

sis. Then we report our major empirical findings of the paper including the in-sample

analysis and the evaluations of the out-of-sample (OOS) predictability of our factor-

augmented forecasting models. In Section 4, we introduce alternative identification

approaches based on proposition-based models, then report the OOS performance of

the models in comparison with the data-driven factor forecasting models. Section 5

concludes.

2 The Empirical Model

2.1 Factor Models for Foreign Exchange Rates

We utilize an array of data dimensionality reduction approaches to extract latent

common factors from a large panel of macroeconomic time series data that might

contain useful predictive contents of the real exchange rate. In addition to the Princi-

pal Component (PC) method, we employ Partial Least Squares (PLS) that generates

target specific common factors. We also utilize the Least Absolute Shrinkage and

Selection Operator (LASSO) in combination with PC and PLS.

2.1.1 Principal Component Factors

We begin with PC that has been popularly employed in the current literature since

the seminal work of Stock and Watson (2002).
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Consider a panel of N macroeconomic T × 1 time series predictors/variables,

x = [x1,x2, ...,xN ], where xi = [xi,1, xi,2, ..., xi,T ]′ , i = 1, ..., N . Abstracting from de-

terministic terms, each predictor xi is assumed to have the following factor structure,

xi,t = λ
′

if
PC
t + εi,t, (1)

where ft =
[
fPC1,t , f

PC
2,t , · · · , fPCR,t

]′
is an R × 1 vector of latent time-varying common

factors at time t. λi = [λi,1, λi,2, · · · , λi,R]
′
denotes an R × 1 vector of time-invariant

but idiosyncratic factor loading coeffi cients for xi. εi,t is the idiosyncratic error term.

As Nelson and Plosser (1982) demonstrated, most macroeconomic time series vari-

ables are better approximated by an integrated non-stationary stochastic process.

Following Bai and Ng (2004), we estimate ft and λi via the PC method for the first-

differenced data, because the PC estimator of ft would be inconsistent if εi,t is an

integrated process. For this, rewrite (1) as follows.

∆xi,t = λ
′

i∆fPCt + ∆εi,t (2)

for t = 2, · · · , T . Since PC is not scale invariant, we first normalize the data,

∆x̃ = [∆x̃1,∆x̃2, ...,∆x̃N ], then apply PC to ∆x̃∆x̃
′
to obtain the factor estimates

∆f̂PCt along with their associated factor loading coeffi cients λ̂i. Estimates for the

idiosyncratic components are naturally given by residuals ∆ε̂i,t = ∆x̃i,t − λ̂
′

i∆f̂PCt .

Level variables are recovered via cumulative summation as follows.

ε̂i,t =
t∑

s=2

∆ε̂i,s, f̂PCt =
t∑

s=2

∆f̂PCs (3)

Note that we obtain consistent factor estimates even when x includes some sta-

tionary variables. Assume that one of x is stationary, say, xj, j ∈ {1, ..., N} is I(0).

Since ∆xj is still stationary, I(−1), the PC estimator remains consistent. Alterna-

tively, one may continue to difference the variables until the null of nonstationarity

hypothesis is rejected via unit root test as is done to construct the Fred-MD.2 How-

ever, this may not be practically useful, even though it is statistically more rigorous,

when unit root tests provides contradicting statistical inferences as the test specifi-

cation (i.e., number of lags, see ) changes. See Cheung and Lai (1995) for related

2The Fred-MD is available at https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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discussions.

2.1.2 Partial Least Squares Factors

PLS for a scalar target variable qt is motivated by the following linear regression

model. Abstracting from deterministic terms,

qt = ∆x
′

tβ + et, (4)

where ∆xt = [∆x1,t,∆x2,t, ...,∆xN,t]
′ is an N ×1 vector of predictor variables at time

t = 1, ..., T , while β is an N × 1 vector of associated coeffi cients. et is an error term.

Note that we again first-difference the predictor variables with an assumption that xt

is a vector of I(1) variables..

PLS is especially useful for regression models that have many predictors, that is,

when N is large. Rewrite (4) as follows,

qt = ∆x
′

twθ + ut (5)

=∆fPLS
′

t θ + ut

where∆fplst =
[
∆fPLS1,t ,∆fPLS2,t , ...,∆fPLSR,t

]′
, R < N is an R×1 vector of PLS factors.

Note that the PLS factor is a linear combination of all predictor variables,

∆fPLSt = w
′
∆xt, (6)

wherew = [w1,w2, ...,wR] is anN×R weighting matrix. That is,wr = [w1,r, w2,r, ..., wN,r]
′
,

r = 1, ..., R, is an N×1 vector of weights on predictor variables for the rth PLS factor,

∆fPLSr,t . θ is an R×1 vector of PLS regression coeffi cients. PLS regression minimizes

the sum of squared residuals from the equation (5) for θ instead of β in (4).

It should be noted that we do not utilize θ for our out-of-sample forecasting

exercises in the present paper. Instead, we augment the benchmark forecasting model

with estimated PLS factors ∆f̂PLSt to make our models to be comparable with the

PC-based factors introduced in the previous section.

Among available PLS algorithms, see Andersson (2009) for a brief survey, we use

the one proposed by Helland (1990) that is more appealing intuitively to forecast

a scalar target variable qt as follows. First, ∆f̂PLS1,t is pinned down by the linear
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combinations of the predictors in ∆xt.

∆f̂PLS1,t =
N∑
i=1

wi,1∆xi,t, (7)

where the loading (weight) wi,1 is given by Cov(qt,∆xi,t). Next, we regress qt and

∆xi,t on ∆f̂PLS1,t then get residuals, q̃t and ∆x̃i,t, respectively, to remove the explained

component by the first factor ∆f̂PLS1,t . The second factor estimate ∆f̂PLS2,t is then

obtained similarly as in (7) with wi,2 = Cov(q̃t,∆x̃i,t). We repeat until the Rth factor

∆f̂PLSR,t is obtained.

2.1.3 Least Absolute Shrinkage and Selection Operator Factors

We employ a shrinkage and selection method for linear regression models, the LASSO,

which is popularly used for sparse regression. Unlike ridge regression, the LASSO

selects a subset (xs) of predictor variables from x by dropping the variables that are

relatively less important in explaining the target variable. Putting it differently, we

implement the feature selection task using the LASSO.

The LASSO puts a cap on the size of the estimated coeffi cients for the ordinary

least squares (LS), and thereby drives the coeffi cient down to zero for some variables.

Put it differently, it solves the following minimization problem of the sum of squared

errors (as in the LS) subject to the constraint on the L1-norm value of β.

min
β

{
1

T

T∑
t=1

(qt −∆x
′

tβ)2
}
, s.t.

N∑
j=1

|βj| ≤ τ (8)

where ∆xt = [∆x1,t,∆x2,t, ...,∆xN,t]
′ is an N ×1 vector of predictor variables at time

t = 1, ..., T , β is an N × 1 vector of associated coeffi cients. We again use the first-

differenced predictor variables, assuming that xt is a vector of I(1) variables. The

tuning parameter τ controls the overall strength of the penalty. As the value of τ

decreases, the LASSO returns a smaller subset of x, setting more coeffi cients to zero.

In what follows, we choose the value of τ that result in a certain number of

predictors by applying the LASSO to ∆x. We then employ the PC or PLS approach

to extract the common factors, ∆f
PC/L
t or ∆f

PLS/L
t , out of the predictor variables

that are chosen by the LASSO regression. Note that we use the LASSO approach

only to obtain the subset of predictors that is closely related to the target. See Kelly
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and Pruitt (2015) for similar approaches.

2.2 Factor Augmented Forecasting Models

As we will demonstrate in the next section, real exchange rates tend to exhibit highly

persistent dynamics that is virtually indistinguishable from the unit root process.

Recognizing this observational equivalence issue, we augment both the stationary

and non-stationary benchmark models by adding factor estimates to improve the

out-of-sample predictability.

Our first benchmark model is motivated by the following non-stationary random

walk process.

qBMRW
t+1 = qt + ηt+1, (9)

where ηt+1 is a white noise process. The j-period ahead forecast from this benchmark

RW model is,

q̂BMRW

t+j|t = qt (10)

Abstracting from deterministic terms, the factor augmented random walk model

is the following.

qFRWt+j = qt + γ
′

j∆f̂ t + et+j, j = 1, 2, .., k, (11)

where ∆f̂t is a vector of factor estimates that are obtained via one of the methods

explained in the previous sections. et+j in (11) is a partial sum of the white noise

process ηt, that is, et+j =
∑j

s=1 ηt+s. Note that (11) nests the random walk (RW)

process (9) when γj = 0.3

Since the coeffi cient on qt is fixed, we cannot use the unrestricted LS for (11). To

resolve this problem, we first regress the long-differenced target variable qt+j − qt on
∆f̂t and obtain the consistent estimate γ̂j.

4 Adding qt back to the fitted value yields

the following j-period ahead forecast for qt+j,

q̂FRWt+j|t = qt + γ̂
′

j∆f̂t (12)

3Note that this specification is inconsistent with our earlier specification described in (4) that
requires stationarity of the target variable qt. Practically speaking, the random walk type models
often perform well in forecasting persistent variables such as the real exchange rate. Furthermore, it
is often diffi cult to distinguish highly persistent or near unit root variables from stationary variables
(observational equivalence), leading us to the two mutually exclusive stochastic processes described
in (11) and (13).

4That is, we assume that qt+j − qt is stationary.
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Our second factor forecast model is motivated by the following stationary AR(1)-

type stochastic process.

qBMAR
t+j = αjqt + ut+j, j = 1, 2, .., k, (13)

where αj is less than one in absolute value for stationarity. Note that we regress qt+j
directly on the current value qt. Alternatively, one may employ a recursive forecasting

approach with an AR(1) model, qt+1 = αqt + εt+1, which implies αj = α̂j under this

approach. Under the direct forecasting approach (13), the j-period ahead forecast is,

q̂BMAR

t+j|t = α̂jqt, (14)

where α̂j is the LS estimate of αj.

Abstracting from deterministic terms, our factor augmented stationary AR(1)-

type model is the following.

qFARt+j = αjqt + β
′

j∆f̂ t + ut+j, j = 1, 2, .., k (15)

Note that we again employ a direct forecasting approach by regressing the j-period

ahead target variable (qt+j) directly on the current period target variable (qt) and the

estimated factors (∆f̂t). Note that (15) is an exact AR(1) process for j = 1 extended

by the factor covariates ∆f̂t. We obtain the following j-period ahead forecast for the

target variable,

q̂FARt+j|t = α̂jqt + β̂
′

j∆f̂t, (16)

where α̂j and β̂j are the least squares coeffi cient estimates. (15) nests the stationary

benchmark model (13) when ∆f̂ t does not contain any useful predictive contents for

qt+j, that is, βj = 0.

2.3 Evaluation Methods

We evaluate the out-of-sample predictability of our models using a fixed-size rolling

window scheme as follows.5

We begin with estimating the first set of factors
{

∆f̂t

}T0
t=1

using the data di-

5Rolling window schemes tend to perform better than the recursive method in the presence of
structural breaks. However, results with recursive approaches were qualitatively similar.
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mensionality reduction methods for the initial T0 < T observations, {qt,∆xi,t}T0t=1,
i = 1, 2, ..., N . Then, we formulate the first forecast q̂t+j|t as explained in the pre-

vious section. Next, we add one observation but drop one earliest observation for

the second round forecasting. That is, we re-estimate
{

∆f̂t

}T0+1
t=2

from {qt,∆xi,t}T0+1t=2 ,

i = 1, 2, ..., N , maintaining the same number of observations (T0), which is used to

formulate the second round forecast, qT0+j+1. We repeat until we forecast the last

observation, qT .

To evaluate the out-of-sample prediction accuracy of our factor augmented models,

we use the ratio of the root mean square prediction error (RRMSPE) defined as

follows,

RRMSPE(j) =

√
1

T−T0−j
∑T

t=T0+j

(
εBMt+j|t

)2
√

1
T−T0−j

∑T
t=T0+j

(
εFt+j|t

)2 , (17)

where

εBMt+j|t = qt+j − q̂BMt+j|t, εFt+j|t = qt+j − q̂Ft+j|t (18)

Note that our factor models outperform the benchmark models when RRMSPE is

greater than 1.6

3 Empirical Findings

3.1 Data Descriptions

We use the real trade weighted dollar indices (major currency index, TWEXMPA;

broad currency index, TWEXBPA), obtained from the Federal Reserve Economic

Data (FRED). Observations are monthly frequency from January 1973 to December

2018, which correspond to the floating exchange rate regime followed by the collapse

of the Bretton Woods system. As can be seen in Figure 1, these indices exhibit

quite persistent dynamics, showing multiple long swings. For example, both real

exchange rates began rising from around 1978 until they reached a peak in 1985.

Then, the G5 nations signed the Plaza Accord, agreeing to depreciate US dollars

6Alternatively, one may employ the ratio of the root mean absolute prediction error (RRMAPE).
That is, the loss function is defined with the absolute value instead of the squared value. RRMAPE
tends to perform more reliably in the presence of outliers. Results are overall qualitatively similar.
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against the Japanese yen and the German Deutsche mark, which resulted in a 10-

year long downward trend.

Figure 1 around here

We obtained 125 macroeconomic time series variables from the FRED-MD data-

base for the same sample period. We log-transformed all quantity variables prior to

estimations other than those in percent (e.g., interest rates and unemployment rates).

These 125 variables are categorized into 9 groups. See Table 1. Group #1 includes

16 output and income variables, while 31 labor market variables belong to group #2.

Groups #3 and #4 include various housing and manufacturers’consumption related

variables. Group #5 has money and credit variables, while groups #6 and #7 include

interest rates and price level variables, respectively. Groups #8 and #9 have the stock

market and exchange rate variables, respectively. Note that groups #1 through #4

represent the real activity variables, while groups #5 through #9 are considered as

financial sector variable groups in the US.

Table 1 around here

3.2 Some Preliminary Analysis

We perform an array of preliminary analysis including univariate and panel unit root

tests (Table 2) and the persistence parameter estimations (Table 3) via a median

unbiased estimator.

3.2.1 Unit Root Tests

We first employ the conventional univariate Augmented Dickey Fuller (ADF ) test

with an intercept for the two real exchange rates, the real major currency dollar

index (qMt ) and the broad dollar index (q
B
t ). As can be seen in Table 2, the test fails

to reject the null of nonstationarity, implying that these variables obey either a highly

persistent stationary process or a unit root process that are not distinguishable with

each other due to observational equivalence.
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We also implemented a panel unit root test for xt, the Panel Analysis of Nonsta-

tionarity in Idiosyncratic and Common components (PANIC) analysis by Bai and Ng

(2004), which tests the nonstationarity null hypothesis for common factors as well

as de-factored idiosyncratic components of the data. Note that we also test the null

hypothesis for the common factors from subsets of xt, real and financial sector vari-

ables separately, since we are particularly interested in evaluating the out-of-sample

predictability of the common factors from these subsets of the data motivated by

Boivin and Ng (2006). It should be noted that PLS factors from qMt are different

from those from qBt , because PLS generates target specific factors, which is not the

case for PC factors that are estimated solely from xt.

The PANIC fails to reject the null of nonstationarity for all common factor esti-

mates at any conventional significance levels. Its panel test rejects the null hypothesis

that states all variables are I(1) processes for 6 out of 9 cases.7 Note that non-

stationarity of the common factor eventually dominates stationarity of de-factored

series, confirming the nonstationarity of xt. Putting it differently, given the strong

evidence of nonstationarity in common factors, the test results provide strong evi-

dence in favor of nonstationarity in the predictor variables xt, which is consistent

with Nelson and Plosser (1982).

Table 2 around here

3.2.2 Persistence of the Real Exchange Rate

As we discussed earlier, it is virtually impossible to distinguish highly persistent sta-

tionary processes from a unit root process (observational equivalence). To check this

possibility in a deeper level, we obtained the median unbiased estimates of the per-

sistence parameter of the real exchange rates employing the grid bootstrap procedure

by Hansen (1999).

For this purpose, consider the following AR(1) process for the real exchange rate

qt.8

qt+1 = αqt + εt+1 (19)

7Its alternative hypothesis is that there is at least one stationary variable.
8If qt is of higher order AR(p), p > 1, process, we can obtain the approximately median unbiased

estimator for α in the presence of nuisance parameters.
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Define the following grid-t statistic at each fine grid point α over an interval [α̂± 6×
se(α̂)] where α̂ is the least squares estimate of α and se(α̂) is its standard error.

tT (α) =
α̂− α
se(α̂)

(20)

We implement 10, 000 nonparametric bootstrap simulations at 100 fine grid points,

then obtain the (p quantile) grid-t bootstrap quantile functions, Q∗T,p(α).9 The median

unbiased estimator is defined as,

αMUE = α ∈ R, s.t. tT (α) = Q∗n,50%(α), (21)

while the 95% grid-t confidence interval is defined by the following.

[
α ∈ R : Q∗T,2.5%(α) ≤ tT (α) ≤ Q∗T,97.5%(α)

]
, (22)

Results are reported in Table 3 and confirmed high degree persistence of the real

exchange rates. Half-life point estimates were 5.730 and 6.612 years for the major and

the broad real exchange rate index, respectively.10 95% confidence bands extended

to positive infinity. These findings provide justifications that we employ both the

stationary and non-stationary benchmark models.

Table 3 around here

3.3 Factor Model In-Sample Analysis

This section describes in-sample properties of the factor estimates we discussed in

Section 2. The bottom panel of Figure 1 reports three first common factor estimates

via PC, PLS for the major real exchange rate (qMt ), and PLS for the broad currency

real exchange rate (qBt ). We present level factors that are visually more tractable,

that is, f̂1,t =
∑t

s=2 ∆f̂1,s. Note that PLS yields target-specific factors, so two PLS

9Each function is evaluated at each grid point α, not at the point estimate. If they are evaluated
at the point estimate, the quantile functions correspond to the bootstrap-t quantile functions. See
Efron and Tibshirani (1994).
10Half-life (HL) estimates are obtained by ln(0.5)/ ln(α̂MUE). HL estimates are annualized by

muliplying it by 12 since the data is monthly frequency.
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factors for each real exchange rate are presented in addition to the PC factor that is

extracted only from the predictor variables.

As the Figure 1 shows, PLS factors demonstrate a strong degree co-movement

with each other, reflecting similar dynamics of qMt and qBt . Although fluctuating

somewhat differently, PLS factors also show strong correlations with the PC factor.

See Table 4. For instance, ∆fPLS1,t (qMt ) and ∆fPLS1,t (qBt ) have 0.376 and 0.418 corre-

lations with ∆fPC1,t , respectively. The second common factors also exhibit 0.393 and

0.298 correlations, respectively. These results imply that real exchange rates share

substantial common driving forces with macroeconomic predictors.

Table 4 around here

In Figure 2, we report the cumulative R2 statistics of PC and PLS factors for up

to 12 factors. By construction, the PLS factors provide a better in-sample fit than

the PC factors as they utilize the covariance between the target and the predictor

variables, while PC factors are extracted from the variance-covariance structure of

predictors only. Unlike PC factors, the cumulative R2 statistics of PLS factors overall

exhibit a positive slope at a decreasing rate. That is, the first common factor explains

more than the second one, which adds more explanatory power than the third one,

and so forth. This is because our PLS algorithm sequentially estimates orthogonalized

common factors using residuals of the target and predictors as explained earlier in

Section 2. Since the PC method uses only the predictor variables without considering

the target variable, additional R2 values do not necessarily decrease. For both the

exchange rates, the cumulative R2 value with up to 12 PLS factors is about 0.42

(using all the variables), whereas that with PC factors is about 0.10 for both. The

cumulative R2 obtained from the PC factors extracted from financial variables is

marginally better at about 0.13. In a nutshell, the PLS method yields superior in-

sample performance in comparison with the PC method.

Figure 2 around here

To investigate the source of the common factor estimates, we employ the marginal

R2 analysis using the predictors and the common factor estimate. That is, we regress
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each predictor onto the common factor to see what proportion of the variation of each

predictor can be explained by the common factor. Results are reported in Figures 3

to 5 for the first common factors.11

Note that the marginal R2 statistics of the PC factor (line) are the same given

the set of predictor variables since PC doesn’t yield target specific factors. As can be

seen in Figure 3, the first PC factor is overall closely related with many predictors,

especially with Groups #1, 2, 5, and 7. The first PLS factors of qMt (top panel) and

qBt (bottom panel) also exhibit similar patterns. On the other hand, the PC factor

from the real activity variables seems to be driven mainly by the first two groups,

#1 and #2 variables. See Figure 4. PLS factors, however, tend to be more closely

related with labor market variables. The financial factor estimates reported in Figure

5 highlight the important role of producer/consumer prices (Group #7), although

monetary aggregates (Group #5) also exhibit overall high R2 values.

Figures 3 to 5 around here

3.3.1 Quantile Regression Analysis

We also employ quantile regression analysis with the first two common factor esti-

mates. That is, we investigate the relationship between j-period ahead real exchange

rates and the common factors using the conditional distribution function at different

quantiles to supplement the least squares (LS) approach, which is based on the con-

ditional mean function. The τ th quantile regression coeffi cient estimator β̂τ ,j for st+j
is defined as follows.

β̂τ ,j = argmin
β

1

T

T∑
t=1

ρτ

(
qt+j − β∆f̂k

)
, k = 1, 2 (23)

where

ρ (u) =

{
−(1− τ)u,

τu,

u < 0

u = 0

Figure 6 reports β̂τ ,0 estimates of the PLS common factors for the contemporane-

ous major (qBt , first two rows) and the broad (q
B
t , last two rows) real exchange rates at

11See Appendix for the analysis with the second common factors.
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the 5%, 25%, 50% (median), 75%, and 95% percentiles in addition to their associated

standard errors that are obtained from 5,000 nonparametric bootstrap. Also, 90%

LS nonparametric confidence intervals appear as shaded areas. Quantile regression

estimates overall confirm the robustness of our LS approaches because most 90% con-

fidence bands of the quantile and LS estimates overlap each other. β̂τ ,j estimates of

the PLS common factors for the 1-, 2-, and 3-year ahead real exchange rates are re-

ported in Appendix. They exhibit similar patterns, concluding our LS-based analysis

are overall robust to potential outliers.

Figure 6 around here

3.4 Out-of-Sample Prediction Performance

We implement out-of-sample forecast exercises using a fixed-size (50% split point)

rolling window method using up to 4 (k) latent factor estimates.12 We utilize PC,

PLS and the LASSO for all 125 monthly frequency time series variables as well as the

following two sub-groups: 65 real activity predictors (groups #1 through #4) and 60

financial sector variables (groups #5 through #9). In what follows, we demonstrate

that our forecasting models outperform the benchmark models at longer horizons

when combined with real activity factors, excluding financial factors, which is consis-

tent with Boivin and Ng (2006).

We report the RRMSPE statistics (17) with the random walk benchmark model

for an array of factor augmented forecasting models in Tables 5 (major currencies

real exchange rate, qMt ) and 6 (broad currencies real exchange rate, q
B
t ). Recall that

our factor models perform better than the benchmark model when the RRMSPE is

greater than one.

As we can see in the top panels for the non-stationary model forecasts (q̂FRWt+j|t),

estimated common factors perform better than the benchmark RW model only in

limited cases. That is, for qMt , the factor model forecast q̂
FRW
t+j|t was overall better

than q̂BRWt+j|t when real activity PLS factors (∆fPLS,Rt ) were used for 1 and 2 year-

ahead forecasts. The PLS total factor (∆fPLSt ) models perform similarly, implying

12We obtained qualitatively similar results with a 70% sample split point.
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that their predictive contents are mostly from ∆fPLS,Rt . For qBt , non-stationary factor

models overall perform poorly relative to the RW benchmark model.

It should be noted that most of our factor augmented stationary models (q̂FARt+j|t)

outperform the RWmodel at 1, 2, 3-year forecast horizons (j). More importantly, our

models perform the best when they are augmented with real activity factors, ∆fPLS,Rt

and ∆fPC,Rt , outperforming both RW and AR benchmark models (superscript *),

in most cases for qMt when the forecast horizon is 1 year or longer. We obtained

qualitatively similar results for qBt . Stationary factor augmented models with qBt

outperform the RW model in the longer run, but they perform better than the AR

model less frequently compared with the cases for qMt .

Tables 5 and 6 around here

We highlight the important role of real factors in out-of-sample predictions in

comparison with financial market factors in Figures 7 and 8. For qMt , q̂
FAR
t+j|t formulated

using ∆fPLS,Rt or ∆fPC,Rt mostly outperform both the AR and RW benchmark models

when the forecast horizon is 1 year or longer. However, the RRMSPE of stationary

models (q̂FARt+j|t ) augmented by financial factors, ∆fPLS,Ft or ∆fPC,Ft , is less than the

one of the AR model in all cases, although they often outperform the RW model. We

observe similar findings for qBt , which implies greater predictive contents of real factors

in comparison with those of financial factors, although our factor models outperform

the benchmark AR model less frequently. These findings clearly demonstrate that

more data are not always better, which is consistent with the work of Boivin and Ng

(2006). Putting it differently, real activity variables/factors contain important longer

run predictive contents for the real exchange rate, whereas financial variables/factors

are likely to add noise instead of predictive contents in the longer run.

Figures 7 and 8 around here

We also employ the LASSO to obtain the subsets of the predictor variables that

are useful to explain the target variable. The idea behind this is to estimate the

factors using fewer but more informative predictor variables. See Bai and Ng (2008).

Following Kelly and Pruitt (2015), we adjust the tuning parameter τ in (8) to select
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a group of 30 predictors from all 125 time series variables, while 20 predictors were

chosen from each of the real activity and the financial variables groups. Then, we

employed PLS and PC to estimate up to 4 common factors that are used to augment

the benchmark RW and AR models. We report results in Tables 7 (qMt ) and 8 (q
B
t ).

We obtain qualitatively similar results as those from pure PLS or PC models.

LASSO-based non-stationary models in combination with PLS or PC perform bet-

ter than previous results in Tables 5 and 6, although overall performance is weak

in comparison with the benchmark models. On the other hand, LASSO/PLS and

LASSO/PC stationary models again outperform the benchmark RW and AR mod-

els when factors were estimated from real activity variables. That is, ∆f
PLS/L,R
t and

∆f
PC/L,R
t seem to contain useful predictive contents of the real exchange rate at longer

forecast horizons. Again, q̂FARt+j|t with financial factors, ∆f
PLS/L,F
t and ∆f

PC/L,F
t , per-

form overall poorly in comparison with the benchmark models. Qualitatively similar

but a little weaker out-of-sample predictability of our factor models was observed for

qBt .

Our exercises imply stronger out-of-sample predictability of our factor models for

qMt relative to that of qBt . We believe this is due to the fact we estimate common

factors using a large panel of US macroeconomic data. qMt is constructed using

mostly developed countries’currencies such as the euro, the British pound, and the

Japanese yen, whereas qBt uses exchange rates and their associated trade weights of

many countries including developing countries such as China, India, and Thailand.

If underlying driving forces of the American economy are more closely connected

with those of developed economies rather than developing countries, factor estimates

obtained from US economic data would contain greater predictive contents for qMt ,

because more information on developing economies would be needed to better forecast

qBt .

Tables 7 and 8 around here

Our forecasting exercises in this section clearly demonstrate that real activity fac-

tors contain useful long-run predictive contents for the real exchange rate. Among

real activity predictors (Groups 1 to 4, 65 variables), Figure 4 shows, via marginal R2

analysis, that PLS/PC real factors are closely related with labor market predictors
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(Group 2). Motivated by this finding, we further investigate the source of the pre-

dictive contents for the real exchange rate by utilizing labor market related factors

that are estimated from 30 labor market variables. Results are reported in Table 9.

Since non-stationary models perform relatively poorly, we report results only from

stationary models.

We further provide visual evidence of such findings. Figure 7 reports theRRMSPE

statistics of real factor (∆fPC,Rt , ∆fPLS,Rt ) augmented models for qMt in comparison

with those of financial factor (∆fPC,Ft , ∆fPLS,Ft ) augmented ones. For j ≥ 12, the

former mostly outperforms both the AR and RWmodels, whereas the latter is overall

dominated by the AR model, although they are still doing fairly well relative to the

RW model. Figure 8 provides qualitatively similar results for qBt , although a little

weaker performance of real factor models.

It is interesting to see stationary models (q̂FARt+j|t ) with labor factors outperform

(first two columns of Table 9) the RWmodel for both exchange rates when the forecast

horizon is over 1 year. q̂FARt+j|t perform better than the AR model especially for most

1-year ahead or longer forecasts for qMt . For q
B
t , labor factors that are estimated via

PC perform better than PLS factor augmented models.

To see whether labor variables are the main source of predictive contents among all

real activity variables, we implement similar exercises using real variables excluding

labor variables, and report the results in the next two columns. We notice that out-

of-sample prediction performances are getting worse when factors from non-labor real

variables are used. We observe that the one-period ahead predictability somewhat

improves but q̂FARt+j|t outperforms only the RW model but was dominated by the AR

model for all cases of j ≥ 12. The last two columns report the cases when all predictors

but labor market variables are used, which result in poor out-of-sample predictability.

All together, these findings imply that the labor market contains substantial predictive

contents for the real exchange rate.

Table 9 around here

We also present visual evidence of these findings. As we can see in Figure 9

for the major currency real exchange rate, labor factor augmented models outper-

form the forecasting models (PLSAR-L, PCAR-L) with non-labor real activity factors
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(PLSAR-NL, PCAR-NL). We obtain qualitatively similar but a little weaker perfor-

mance of the former relative to the latter for the broad currency real exchange rate.

See Figure 10.

Figures 9 and 10 around here

As seen in previous sections, our factor models perform poorly if augmented by

financial market factors. MarginalR2 analysis in Figure 5 shows that the first financial

common factor is closely related with consumer/producer prices. This motivates us

to investigate whether price factors behave as noise in out-of-sample forecasts for the

real exchange rate. For this purpose, we estimate the factors only from price variables

and implement similar forecasting exercises with those factors. Results are shown in

Table 10.

Price factor augmented models (first two columns) perform quite poorly even

relative to the RWmodel, while financial factors excluding price variables outperform

both the RW and AR models frequently especially when factors were estimated via

PLS. The last two columns show overall prediction performances can improve when

price variables are excluded.

Table 10 around here

Figures 11 and 12 clearly demonstrate these interesting findings. Note that the

RRMSPE statistics stays mostly below 1, indicating that price factor models are

dominated by the RW model, when price factors were used. Excluding prices, how-

ever, financial factor augmented models dramatically improve the forecasting perfor-

mances when j ≥ 12, indicating that poor performances of financial factor models

are mostly due to price variables.

Figures 11 and 12 around here
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4 Alternative Identifications

4.1 Proposition Based Global Factors

This section implements out-of-sample forecast exercises, utilizing global factors that

are motivated by existing propositions in the current open economy macroeconomics

literature. Via PC and PLS for international data, we extract common factors from

the predictors based on Purchasing Power Parity (PPP) and Uncovered Interest Parity

(UIP) as well as Real Interest Rate Parity (RIRP), then implement out-of-sample

prediction exercises with these parsimoniously estimated factors.

4.1.1 Purchasing Power Parity: Relative Price Factors

The log real exchange rate is defined as follows.

qt = st + relpt, (24)

where st denotes the log nominal (bilateral) exchange rate as the foreign currency

price of 1 US dollar, relpt is the log relative price (pt − p∗t ), and pt and p
∗
t are the

log prices in the US and in the foreign country, respectively. Under PPP, qt obeys

a stationary I(0) stochastic process, which is consistent with our stationary models,

while st and the relative price (pt − p∗t ) obey a non-stationary I(1) process. That is,

st and (pt − p∗t ) are cointegrated with a known cointegrating vector [1, − 1].

We obtained the Consumer Price Index (CPI) of 43 countries from the IFS data-

base including 18 euro-zone countries. Assuming the US as the home country, we

constructed 42 relative prices (pt − p∗t ) with different sample periods. We estimated
the first common factor from the following two groups of relative prices after taking

the first difference (∆pt − ∆p∗t ) or (πt − π∗t ), that is, inflation differences, since the
relative price is an integrated process I(1).

∆fP,Dt denotes the common factor obtained by applying PLS and PC to a panel

of 18 developed countries’relative prices from January 1973 to December 2018.13 We

do not use the nominal exchange rate st as a predictor variable, because 11 out of

13For the group of developed countries, we include 11 euro-zone countries (Austria, Belgium,
Finland, France, Germany, Greece, Italy, Luxembourg, Netherlands, Portugal, Spain) and 8 non-
euro-zone countries (Canada, Denmark, Japan, Singapore, Switzerland, Sweden, United Kingdom,
United States). All data are obtained from the IFS database with an exception of Singapore. We
obtained the Singapore CPI from the Department of Statistics of Singapore.
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19 developed countries are euro-zone countries, resulting in only 9 nominal exchange

rates that makes it diffi cult to apply factor analysis. ∆fP,Ft is the common factor from

all 42 prices relative to the US from the same sample period. Since the data is not

a balanced panel, we obtained the single common factor by taking the cross-section

average (CSA).14

We report j-period ahead out-of-sample predictability exercise results using a sin-

gle factor for each model with a 50% split point in Table 11. Again, non-stationary

models (q̂FRWt+j|t) mostly perform worse than the RW model, while stationary models

(q̂FARt+j|t) outperform the RW benchmark model in most cases for both real exchange

rates, qMt and qBt , whereas . However, the factor models perform better than the

benchmark AR model only for 3 and 1 out of 12 cases for qMt and qBt , respectively.

That is, our parsimonious factor models with PPP-based factors perform overall

poorly in comparison with the models with real activity factors, although they still

perform better than the RW model.

Table 11 around here

4.1.2 Uncovered Interest Parity: Interest Rate Spread

We also utilize factors extracted from up to 17 international short-run interest rate

spread relative to the US interest rate, motivated by the two propositions: Uncovered

Interest Parity (UIP) and Real Interest Rate Parity (RIRP).15 Abstracting from risk

premium, UIP states the following.

∆st+1 = i∗t − it + εt+1, (25)

where ∆st+1 is the appreciation (depreciation) rate of the home (foreign) currency,

while it and i∗t are nominal short-run interest rates in the home and foreign countries,

14In addition to the group of 19 developed countries, we added 7 the rest of euro-zone countries
(Cyprus, Estonia, Ireland, Latvia, Lithuania, Slovakia, Slovenia) except Malta, and 17 non-euro-zone
countries (Brazil, China, Chile, Colombia, Czech Republic, Hong Kong, Hungary, India, Indonesia,
Israel, Korea, Malaysia, Mexico, Poland, Romania, Russia, Saudi Arabia).
15For the group of developed countries, we include 11 euro-zone countries (Austria, Belgium, Fin-

land, France, Germany, Greece, Italy, Luxembourg, Netherlands, Portugal, Spain) and 7 non-euro-
zone countries (Canada, Denmark, Japan, Switzerland, Sweden, United Kingdom, United States).
All data are obtained from the OECD database and the FRED.
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respectively. εt+1 = ∆st+1−Et∆st+1 is the mean-zero rational expectation error term,
that is, Etεt+1 = 0.

We obtained the short-term interest rate data from the FRED and the OECD

database for the same group of countries in the previous section for PPP. We con-

structed the nominal interest rate spread by subtracting the US interest rate (it) from

the national interest rate (i∗t ). Ex post real interest rates were obtained by subtract-

ing one-period ahead CPI-based inflation rate from the nominal interest rate, then

were used to produce real interest rate spreads, r∗t − rt.
Table 12 reports j-period ahead out-of-sample predictability exercise results using

a single factor that is motivated by UIP. We estimate ∆fU,Ft by taking the cross-

section average of the unbalanced panel of all 17 countries’ nominal interest rate

spreads relative to the US, ∆(i∗t − it), from January 1973 to December 2018, while

∆fU,St was estimated via PLS and PC for the balanced panel of 16 interest rate spreads

of developed countries relative to the US from August 1985 to December 2018.

Note that we use first differenced interest rate spreads, which may be inconsistent

with (25) that implies stationarity of the interest rate spread. As a preliminary

test, we implemented the PANIC test for panels of (i∗t − it) data, which provided

strong evidence of nonstationarity. The p values of the first two PLS common factors

of the i∗t − it for qMt were 0.165 and 0.197, respectively. The p values of the first

two PLS common factors for qBt were 0.062 and 0.294, respectively.
16 That is, the

PANIC test fails to reject the null of nonstationarity at the 5% significance level for

all cases. The p values of the first two PC common factors were 0.071 and 0.021,

respectively, implying the nonstationarity of the panel was caused by the integrated

first common factor. Therefore, the PANIC test overall provide empirical evidence in

favor of nonstationarity. Based on these observations, we implemented out-of-sample

forecasting exercises with factors from ∆(i∗t − it) to make sure of the consistency of
our factor estimates.

Our stationary models (q̂FARt+j|t) outperform again the RW benchmark model in all

cases for both qMt and qBt , whereas non-stationary models (q̂
FRW
t+j|t) overall perform

worse than the RW model. The factor models perform better than the benchmark

AR model only for 7 out of 12 and 8 out of 12 cases for qMt and qBt , respectively. That

is, our models with UIP-based factors perform overall poorly in comparison with the

models with real activity factors at longer horizons, although they perform better

16We don’t consider the possibility that the two common factors are cointegrated.
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than the RW model. Interestingly, UIP models perform better than real activity

models in addition to both benchmark models at 1-period horizon for 10 out of 12

cases.

Table 12 around here

4.1.3 Real Interest Rate Parity: Real Interest Rate Spread

Assuming PPP holds, take the first difference to (24) at time t+ 1,

∆qt+1 = ∆st+1 + πt+1 − π∗t+1 (26)

Combining (25) and (26), we obtain the following expression for Real Interest Rate

Parity (RIRP).

∆qt+1 = r∗t − rt + εt+1, (27)

where rt = it− πt+1 and r∗t = i∗t − π∗t+1 are the ex post real interest rates in the home
and foreign country, respectively.

Table 13 reports j-period ahead out-of-sample predictability exercise results using

a single factor, motivated by RIRP. We extract ∆fR,Ft by taking the cross-section

average of the unbalanced panel of all 17 countries’real interest rate spreads relative

to the US, (r∗t−rt), from February 1973 to December 2018, while∆fR,St was estimated

via applying PLS and PC to the balance panel of real interest rate spreads of 16

developed countries relative to the US from August 1985 to December 2018.

Note that, unlike the UIP factors, we estimate the common factors from (r∗t − rt)
without taking differences. This is because we obtained very strong evidence in

favor of stationarity for real interest rate spreads. The PANIC rejects the null of

nonstationarity for the first two PLS/PC common factors of the r∗t − rt for both

real exchange rates at the 1% significance level. And the panel test for de-factored

idiosyncratic components provided strong evidence of stationarity at any conventional

significance level.

Our factor augmented forecasting models perform poorly even compared with the

RW benchmark model when combined with RIRP factors. Furthermore, the AR

benchmark model outperforms all RIRP-based factor models.
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Table 13 around here

5 Concluding Remarks

In this paper, we propose parsimonious factor-augmented forecasting models for the

dollar real exchange rate in a data rich environment. We apply an array of data

dimensionality reduction methods to a large panel of 125 monthly frequency macro-

economic variables from January 1973 to December 2018 to extract latent common

factors. In addition to the Principal Component (PC) analysis, we employ the Partial

Least Squares (PLS) approach that are largely overlooked in the current literature.

We also employ the Least Absolute Shrinkage and Selection Operator (LASSO) com-

bined with PC and PLS. We augment the random walk (RW) benchmark and a

stationary autoregressive (AR) type benchmark model with estimated common fac-

tors to examine if these factors provide additional predictive contents for the real

exchange rate.

We implemented an array of out-of-sample prediction exercises using a fixed-size

rolling window scheme for 1-month to 3-year forecast horizons, then evaluated our

proposed factor-augmented forecasting models relative to the two benchmark models

via the ratio of the root mean squared prediction error (RRMSPE). Our stationary

forecasting models outperform the RW benchmark consistently when the forecast

horizon is 1-year or longer. In particular, our models that utilize real activity factors

overall outperform both the RW and the AR benchmark when the forecast horizon is

1-year or longer. Factors obtained from financial/nominal predictor variables fail to

contribute to out-of-sample predictability. These findings are in line with the work of

Boivin and Ng (2006) who demonstrated the importance of relevant common factors

for the target variable.

We also implement forecasting exercises using the factors that are motivated by

exchange rate determination theories. Using up to 43 country-level data for prices

and interest rates, we extract common factors based on Purchasing Power Parity

(PPP), Uncovered Interest Parity (UIP), and Real Uncovered Interest Parity (RIRP)

for out-of-sample forecasting exercises. Forecasting models with UIP common factors

turn out to perform well in the short-run, while the models with either PPP or RIRP
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factors perform overall poorly. That is, these proposition-based factors fail to yield

greater predictive contents than the data-driven real factors at longer horizons.
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Table 1. Macroeconomic Data Descriptions

Group ID Data ID Data Description
#1 1-16 Industrial Production Indices
#2 17-47 Labor Market Variables
#3 48-57 Housing Inventories
#4 58-65 Manufacturers’Consumption/ New Orders
#5 66-79 Monetary Aggregates
#6 80-96 Domestic Interest Rates
#7 97-116 Producer/Consumer Prices
#8 117-121 Stock Indices
#9 122-125 Bilateral Exchange Rates

Note: We obtained all data from the FRED-MD website, https://research.stlouisfed.org/econ/mccracken/fred-
databases/.
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Table 2. Unit Root Test Results

ADF Test
qMt −2.131

(0.232)
qBt −2.027

(0.275)

PANIC Test
qMt qBt xt

All variables fPLS1,t −1.435
(0.569)

fPLS1,t −1.200
(0.674)

fPC1,t −1.274
(0.641)

fPLS2,t −0.779
(0.827)

fPLS2,t −0.873
(0.795)

fPC2,t −0.626
(0.868)

Pê 3.605‡
(0.000)

Pê 2.062†
(0.020)

Pê 5.982‡
(0.000)

Real Variables fPLS,R1,t −1.275
(0.641)

fPLS,R1,t −1.591
(0.488)

fPC,R1,t −1.938
(0.302)

fPLS,R2,t −1.746
(0.399)

fPLS,R2,t −1.171
(0.690)

fPC,R2,t −1.098
(0.722)

Pê 4.809‡
(0.000)

Pê 6.911‡
(0.000)

Pê 1.094
(0.137)

Financial Variables fPLS,F1,t −1.617
(0.472)

fPLS,F1,t −0.975
(0.763)

fPC,F1,t −0.524
(0.892)

fPLS,F2,t −0.740
(0.835)

fPLS,F2,t −0.804
(0.819)

fPC,F2,t −1.747
(0.399)

Pê −0.056
(0.522)

Pê 0.048
(0.481)

Pê 2.324‡
(0.010)

Note: qMt and qBt are the real trade weighted US dollar index with major and broad currencies,
respectively. PLS produces target specific factors for qMt and qBt separately, while PC yields the
same common factors independent on the target variable. Real variables are from group #1
through #4, while financial variables include group #5 through #9. The augmented Dickey-
Fuller (ADF ) test reports the ADF t -statitics when an intercept is included. P -values are
in parenthesis. For the PANIC test results, we report the ADF t -statistics with an intercept
for each common factor estimate. Pê denotes the panel test statistics from the de-factored
idiosyncratic components. The ADF test fails to reject the null of nonstationarity even at the
10% significance level for all cases. The panel test rejects the null of nonstationarity at the 5%
for 6 out of 9 cases. ‡ and † denote a rejection of the null hypothesis at the 1% and 5% level,
respectively. Note, however, that the panel results do not provide any evidence of stationarity
for xt given strong evidence of nonstationarity of common factors.
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Table 3. Median Unbiased Estimates of the Persistence Parameter

β C.I HL C.I
qMt 0.990 [0.977, 1.002] 5.730 [2.444,∞)
qBt 0.991 [0.980, 1.002] 6.612 [2.789,∞)

Note: qMt and qBt are the real trade weighted US dollar index with major currencies and broad
range of currencies, respectively. β denotes the persistent parameter from an autoregressive
process of degree 1, AR(1), specificiation of each real exchange rate. We corrected the median
bias following Hansen’s (1999) grid bootstrap technique. We employed 100 fine evenly spaced
grid points on the interval [β̂ ± 6× se(β̂)], where β̂ is the least squares estimate of β and se is
its standard error. 10,000 nonparametric bootstrap simulations were done at each grid point to
construct quantile function estimates. HL denotes the implied half-life point estimate in years.
C.I denotes the 95% median unbiased confidence band.
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Table 4. Correlation Matrix of Factor Estimates

Major Currencies ( qMt )
∆fPLS1,t ∆fPLS,R1,t ∆fPLS,F1,t ∆fPC1,t ∆fPC,R1,t ∆fPC,F1,t

∆fPLS1,t 1.0000
∆fPLS,R1,t 0.5929 1.0000
∆fPLS,F1,t 0.9464 0.3010 1.0000
∆fPC1,t 0.3761 0.1094 0.4015 1.0000
∆fPC,R1,t 0.1470 0.0826 0.1409 0.9284 1.0000
∆fPC,F1,t 0.6368 0.0230 0.7448 0.4742 0.1680 1.0000

∆fPLS2,t ∆fPLS,R2,t ∆fPLS,F2,t ∆fPC2,t ∆fPC,R2,t ∆fPC,F2,t

∆fPLS2,t 1.0000
∆fPLS,R2,t 0.4223 1.0000
∆fPLS,F2,t 0.8684 0.1106 1.0000
∆fPC2,t 0.3927 0.3830 0.5590 1.0000
∆fPC,R2,t 0.2477 0.0433 0.2188 0.3358 1.0000
∆fPC,F2,t 0.1704 0.2749 0.0195 0.2948 0.0769 1.0000

Broad Currencies ( qBt )
∆fPLS1,t ∆fPLS,R1,t ∆fPLS,F1,t ∆fPC1,t ∆fPC,R1,t ∆fPC,F1,t

∆fPLS1,t 1.0000
∆fPLS,R1,t 0.5989 1.0000
∆fPLS,F1,t 0.9595 0.3491 1.0000
∆fPC1,t 0.4179 0.1273 0.4442 1.0000
∆fPC,R1,t 0.1306 0.0155 0.1474 0.9284 1.0000
∆fPC,F1,t 0.8068 0.2280 0.8639 0.4742 0.1680 1.0000

∆fPLS2,t ∆fPLS,R2,t ∆fPLS,F2,t ∆fPC2,t ∆fPC,R2,t ∆fPC,F2,t

∆fPLS2,t 1.0000
∆fPLS,R2,t 0.4085 1.0000
∆fPLS,F2,t 0.8667 0.2614 1.0000
∆fPC2,t 0.2978 0.1337 0.4286 1.0000
∆fPC,R2,t 0.1707 0.8223 0.1620 0.3358 1.0000
∆fPC,F2,t 0.0577 0.0852 0.1022 0.2948 0.0769 1.0000

Note: We report the absolute value of the correlation coeffi cient statistics of the two factor
estimates, because the factor loading and latent factors are jointly estimated, thus the sign of
the factor estimates is not relevant.
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Table 5. j-Period ahead Out-of-Sample Predictability: Major Currencies

Non-Stationary Models ( q̂FRWt+j|t)

j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 0.9934 0.9943 0.9972 0.9928 0.9961 0.9885
2 0.9887 0.9900 0.9917 0.9872 0.9975 0.9851
3 0.9817 0.9933 0.9917 0.9814 0.9973 0.9839
4 0.9788 0.9919 0.9886 0.9843 0.9931 0.9716

12 1 1.0149 1.0085 0.9939 0.9850 0.9846 0.9752
2 1.0183 1.0122 0.9854 0.9726 0.9998 0.9715
3 0.9948 1.0211 0.9720 0.9741 1.0088 0.9477
4 1.0070 1.0256 0.9769 0.9658 0.9948 0.9455

24 1 1.0290 1.0257 0.9913 0.9534 0.9642 0.9504
2 1.0175 1.0244 0.9820 0.9435 0.9689 0.9440
3 0.9976 1.0302 0.9494 0.9463 0.9518 0.9222
4 1.0095 0.9993 0.9470 0.9427 0.9328 0.9192

36 1 1.0187 1.0109 0.9837 0.9220 0.9236 0.9154
2 0.9572 0.9727 0.9575 0.8830 0.9242 0.9054
3 0.9482 0.9588 0.9041 0.8847 0.8894 0.8824
4 0.9723 0.9257 0.9127 0.8722 0.8777 0.8824

Stationary Models ( q̂FARt+j|t)

j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 0.9867 0.9927 0.9932 0.9915 0.9971 0.9865
2 0.9797 0.9851 0.9896 0.9832 0.9977 0.9827
3 0.9797 0.9918 0.9880 0.9760 0.9969 0.9811
4 0.9748 0.9914 0.9869 0.9798 0.9931 0.9710

12 1 1.0388 1.0557∗ 1.0249 1.0442∗ 1.0448∗ 1.0188
2 1.0318 1.0435∗ 1.0231 1.0195 1.0642∗ 1.0118
3 1.0253 1.0607∗ 1.0035 1.0187 1.0783∗ 0.9992
4 1.0169 1.0560∗ 0.9946 1.0081 1.0622∗ 0.9820

24 1 1.0911 1.1545∗ 1.0612 1.1020∗ 1.1185∗ 1.0394
2 1.0512 1.1267∗ 1.0330 1.0703 1.1463∗ 1.0252
3 1.0415 1.1431∗ 0.9949 1.0688 1.1513∗ 1.0124
4 1.0301 1.0914 0.9778 1.0471 1.1188∗ 0.9767

36 1 1.1507 1.2432∗ 1.1159 1.1785∗ 1.1872∗ 1.0510
2 1.0297 1.1856∗ 1.0345 1.0791 1.2125∗ 1.0298
3 1.0291 1.1912∗ 0.9740 1.0791 1.1998∗ 1.0179
4 1.0253 1.1197 0.9723 1.0380 1.1734∗ 0.9869

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗indicates that the
factor model outperforms both the AR and RW benchmark models.

36



Table 6. j-Period ahead Out-of-Sample Predictability: Broad Currencies

Non-Stationary Models ( q̂FRWt+j|t)

j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 0.9917 0.9956 0.9945 0.9944 0.9968 0.9895
2 0.9935 0.9887 0.9930 0.9866 0.9979 0.9882
3 0.9832 0.9925 0.9901 0.9805 0.9975 0.9856
4 0.9803 0.9875 0.9776 0.9891 0.9950 0.9744

12 1 0.9804 0.9823 0.9800 0.9816 0.9847 0.9664
2 0.9934 0.9881 0.9693 0.9575 1.0016 0.9588
3 0.9794 1.0015 0.9709 0.9566 1.0115 0.9367
4 0.9892 0.9969 0.9641 0.9473 0.9972 0.9308

24 1 0.9725 0.9922 0.9556 0.9756 0.9863 0.9380
2 0.9825 0.9972 0.9405 0.9499 1.0049 0.9274
3 0.9779 1.0020 0.9459 0.9512 1.0048 0.9053
4 0.9732 0.9670 0.9380 0.9374 0.9735 0.8900

36 1 0.9266 0.9576 0.9104 0.9498 0.9485 0.8891
2 0.9116 0.9320 0.8925 0.8833 0.9660 0.8735
3 0.9143 0.9253 0.8945 0.8845 0.9464 0.8486
4 0.9206 0.8963 0.8868 0.8627 0.9213 0.8408

Stationary Models ( q̂FARt+j|t)

j #Factors ∆fPLSt ∆fPLS,Rt ∆fPLS,Ft ∆fPCt ∆fPC,Rt ∆fPC,Ft

1 1 0.9887 0.9957 0.9926 0.9950 0.9987 0.9888
2 0.9867 0.9859 0.9926 0.9852 0.9986 0.9871
3 0.9833 0.9933 0.9876 0.9780 0.9974 0.9847
4 0.9773 0.9913 0.9776 0.9856 0.9954 0.9749

12 1 1.0052 1.0193 1.0229 1.0342 1.0416 1.0151
2 1.0226 1.0157 1.0277 1.0033 1.0498 1.0060
3 1.0240 1.0424 1.0134 1.0007 1.0572∗ 0.9978
4 1.0140 1.0330 0.9953 0.9916 1.0431 0.9795

24 1 1.0145 1.0888 1.0367 1.0862 1.1154∗ 1.0250
2 1.0409 1.0855 1.0316 1.0442 1.1355∗ 1.0101
3 1.0403 1.1140∗ 1.0164 1.0397 1.1501∗ 0.9946
4 1.0082 1.0604 0.9844 1.0146 1.1119∗ 0.9458

36 1 1.0146 1.1430∗ 1.0283 1.1461∗ 1.1720∗ 1.0057
2 1.0153 1.1518∗ 0.9962 1.0398 1.2033∗ 0.9852
3 1.0148 1.1834∗ 0.9817 1.0387 1.2170∗ 0.9731
4 0.9886 1.1154 0.9540 0.9936 1.1837∗ 0.9249

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗indicates that the
factor model outperforms both the AR and RW benchmark models.
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Table 7. j-Period ahead Out-of-Sample Predictability with LASSO: Major Currencies

Non-Stationary Models ( q̂FRWt+j|t)

j #Factors ∆f
PLS/L
t ∆f

PLS/L,R
t ∆f

PLS/L,F
t ∆f

PC/L
t ∆f

PC/L,R
t ∆f

PC/L,F
t

1 1 0.9959 0.9931 0.9989 0.9903 0.9964 0.9923
2 0.9901 0.9927 0.9937 0.9920 0.9972 0.9878
3 0.9916 0.9920 0.9863 0.9980 0.9977 0.9747
4 0.9819 0.9909 0.9804 0.9812 0.9958 0.9695

12 1 0.9954 1.0147 0.9843 0.9999 0.9911 0.9786
2 0.9875 1.0228 0.9781 0.9681 1.0039 0.9581
3 1.0214 1.0093 0.9836 0.9621 0.9861 0.9364
4 1.0040 1.0100 0.9811 0.9598 0.9857 0.9450

24 1 1.0040 1.0351 0.9891 0.9850 0.9321 0.9542
2 0.9891 1.0034 0.9627 0.8961 0.9350 0.9290
3 1.0874 0.9886 0.9858 0.8886 0.9168 0.8785
4 1.0443 0.9869 0.9631 0.9037 0.9164 0.8963

36 1 0.9920 1.0010 0.9982 0.9512 0.8713 0.9152
2 0.9475 0.9162 0.9724 0.8234 0.8737 0.8888
3 1.0264 0.9050 0.9706 0.8259 0.8664 0.8247
4 0.9802 0.8982 0.9277 0.8374 0.8628 0.8462

Stationary Models ( q̂FARt+j|t)

j #Factors ∆f
PLS/L
t ∆f

PLS/L,R
t ∆f

PLS/L,F
t ∆f

PC/L
t ∆f

PC/L,R
t ∆f

PC/L,F
t

1 1 0.9924 0.9914 0.9928 0.9844 0.9966 0.9835
2 0.9920 0.9945 0.9899 0.9859 1.0001 0.9769
3 0.9922 0.9923 0.9854 0.9897 0.9983 0.9765
4 0.9845 0.9907 0.9835 0.9750 0.9971 0.9656

12 1 1.0305 1.0522∗ 1.0204 1.0357 1.0626∗ 1.0025
2 1.0404 1.0691∗ 1.0250 1.0236 1.0696∗ 0.9519
3 1.0574∗ 1.0470∗ 1.0303 1.0193 1.0471∗ 0.9546
4 1.0438∗ 1.0468∗ 1.0221 1.0164 1.0466∗ 0.9592

24 1 1.0801 1.1527∗ 1.0465 1.0933∗ 1.1246∗ 0.9968
2 1.0535 1.1342∗ 1.0097 1.0606 1.1261∗ 0.9139
3 1.1207∗ 1.1023∗ 1.0257 1.0320 1.1004∗ 0.9071
4 1.0858 1.0971∗ 0.9846 1.0273 1.0993∗ 0.9159

36 1 1.1384 1.2239∗ 1.0993 1.1358 1.1752∗ 0.9958
2 1.0502 1.1825∗ 1.0371 1.0697 1.1748∗ 0.9080
3 1.1067 1.1516 1.0411 1.0634 1.1794∗ 0.8924
4 1.0870 1.1365 0.9845 1.0604 1.1760∗ 0.9025

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗indicates that the
factor model outperforms both the AR and RW benchmark models.
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Table 8. j-Period ahead Out-of-Sample Predictability with LASSO: Broad Currencies

Non-Stationary Models ( q̂FRWt+j|t)

j #Factors ∆f
PLS/L
t ∆f

PLS/L,R
t ∆f

PLS/L,F
t ∆f

PC/L
t ∆f

PC/L,R
t ∆f

PC/L,F
t

1 1 0.9976 0.9951 0.9991 0.9946 0.9968 0.9919
2 0.9917 0.9925 0.9970 0.9959 0.9978 0.9894
3 0.9798 0.9971 0.9879 0.9888 1.0011 0.9898
4 0.9712 0.9988 0.9823 0.9869 0.9953 0.9922

12 1 0.9972 0.9846 0.9935 1.0013 0.9960 0.9750
2 1.0056 1.0029 0.9864 0.9892 0.9917 0.9570
3 1.0085 0.9929 1.0247 0.9587 0.9753 0.9308
4 0.9851 0.9865 0.9986 0.9510 0.9674 0.9377

24 1 1.0176 0.9965 0.9934 0.9964 0.9811 0.9524
2 1.0229 1.0037 0.9714 0.9667 0.9535 0.9058
3 1.0499 0.9927 1.0264 0.8953 0.9413 0.8580
4 1.0126 1.0074 0.9339 0.8814 0.9340 0.8531

36 1 1.0001 0.9538 0.9733 0.9744 0.9179 0.8947
2 0.9709 0.9188 0.9224 0.8875 0.8870 0.8432
3 1.0260 0.9208 0.9864 0.7873 0.8783 0.7969
4 0.9774 0.9396 0.8414 0.7693 0.8782 0.7662

Stationary Models ( q̂FARt+j|t)

j #Factors ∆f
PLS/L
t ∆f

PLS/L,R
t ∆f

PLS/L,F
t ∆f

PC/L
t ∆f

PC/L,R
t ∆f

PC/L,F
t

1 1 0.9959 0.9962 0.9967 0.9899 0.9973 0.9882
2 0.9924 0.9948 0.9956 0.9895 1.0003 0.9818
3 0.9815 0.9986 0.9843 0.9788 1.0040∗ 0.9837
4 0.9731 0.9993 0.9779 0.9761 0.9984 0.9896

12 1 1.0227 1.0191 1.0331 1.0306 1.0491 1.0136
2 1.0587∗ 1.0429 1.0310 1.0307 1.0451 0.9802
3 1.0549∗ 1.0288 1.0486 0.9673 1.0224 0.9528
4 1.0288 1.0214 1.0190 0.9560 1.0079 0.9658

24 1 1.0439 1.0912 1.0591 1.0736 1.1315∗ 1.0175
2 1.0843 1.1251∗ 1.0416 1.0814 1.1064∗ 0.9276
3 1.1014∗ 1.0953 1.0640 0.9264 1.0898 0.8871
4 1.0583 1.1052∗ 0.9698 0.8908 1.0743 0.8836

36 1 1.0425 1.1438∗ 1.0591 1.1108 1.1905∗ 0.9653
2 1.0643 1.2083∗ 0.9818 1.0920 1.1733∗ 0.8723
3 1.1173 1.1800∗ 1.0209 0.8772 1.1858∗ 0.8483
4 1.0752 1.1981∗ 0.8955 0.8501 1.1704∗ 0.8079

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗ indicates that the
factor model outperforms both the AR and RW benchmark models.
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Table 9. j-Period ahead Out-of-Sample Predictability: Labor Market Factors

Major Currencies (qMt ): Stationary Models ( q̂
FAR
t+j|t)

Labor Variables Real excluding Labor Total excluding Labor
j #Factors ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt
1 1 0.9947 0.9987 0.9998 1.0011∗ 0.9923 0.9845

2 0.9918 0.9960 1.0095∗ 0.9940 0.9865 0.9805
3 0.9932 0.9867 1.0015∗ 0.9945 0.9829 0.9799
4 0.9934 0.9865 0.9946 0.9911 0.9794 0.9724

12 1 1.0603∗ 1.0633∗ 1.0334 1.0350 1.0249 1.0212
2 1.0652∗ 1.0663∗ 1.0349 1.0364 1.0243 1.0118
3 1.0527∗ 1.0476∗ 1.0413 1.0348 1.0132 1.0096
4 1.0515∗ 1.0487∗ 1.0413 1.0292 1.0006 0.9948

24 1 1.1723∗ 1.1352∗ 1.0823 1.0917 1.0604 1.0511
2 1.1309∗ 1.1468∗ 1.0813 1.0890 1.0331 1.0369
3 1.0998∗ 1.0998∗ 1.0882 1.0843 1.0204 1.0353
4 1.1076∗ 1.0933∗ 1.0881 1.0795 1.0018 1.0089

36 1 1.2685∗ 1.1925∗ 1.1656 1.1588 1.1182 1.0873
2 1.1934∗ 1.1925∗ 1.1602 1.1596 1.0395 1.0426
3 1.1540 1.1470 1.1538 1.1551 1.0453 1.0455
4 1.1585 1.1242 1.1550 1.1556 1.0064 1.0148

Broad Currencies (qBt ): Stationary Models ( q̂
FAR
t+j|t)

Labor Variables Real excluding Labor Total excluding Labor
j #Factors ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt
1 1 0.9952 0.9994 1.0115∗ 1.0038∗ 0.9932 0.9895

2 0.9891 0.9965 1.0095∗ 0.9971 0.9901 0.9817
3 0.9905 0.9874 1.0033∗ 0.9986 0.9857 0.9840
4 0.9902 0.9840 0.9984 0.9964 0.9839 0.9811

12 1 1.0213 1.0518∗ 1.0375 1.0431 1.0209 1.0178
2 1.0365 1.0539∗ 1.0407 1.0417 1.0272 1.0040
3 1.0429 1.0443 1.0390 1.0397 1.0158 1.0022
4 1.0418 1.0436 1.0362 1.0268 0.9862 0.9900

24 1 1.0956 1.1332∗ 1.0782 1.0968 1.0290 1.0348
2 1.0977 1.1426∗ 1.0880 1.0933 1.0274 1.0218
3 1.0965 1.1070∗ 1.0936 1.0879 1.0247 1.0185
4 1.0955 1.0989 1.0867 1.0768 0.9754 0.9887

36 1 1.1585∗ 1.1993∗ 1.1269 1.1339 1.0257 1.0387
2 1.1851∗ 1.1992∗ 1.1323 1.1350 0.9939 1.0034
3 1.1724∗ 1.1623∗ 1.1378 1.1297 0.9921 1.0034
4 1.1788∗ 1.1391 1.1365 1.1301 0.9465 0.9706

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗ indicates that the
factor model outperforms both the AR and RW benchmark models.
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Table 10. j-Period ahead Out-of-Sample Predictability: Price Factors

Major Currencies (qMt ): Stationary Models ( q̂
FAR
t+j|t)

Price Variables Financial excl. Prices Total excluding Prices
j #Factors ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt
1 1 0.9926 0.9918 0.9997 0.9915 0.9912 0.9946

2 0.9864 0.9886 0.9913 0.9886 0.9817 0.9827
3 0.9884 0.9863 0.9863 0.9756 0.9754 0.9747
4 0.9816 0.9895 0.9746 0.9623 0.9712 0.9717

12 1 1.0145 1.0018 1.0405 1.0419∗ 1.0434∗ 1.0463∗

2 0.9713 0.9574 1.0403 1.0410 1.0439∗ 1.0484∗

3 0.9481 0.9511 1.0471∗ 1.0364 1.0386 1.0432∗

4 0.9452 0.9397 1.0378 0.9989 1.0322 1.0463∗

24 1 1.0484 1.0096 1.0954∗ 1.0905 1.1294∗ 1.1210∗

2 0.9283 0.9081 1.0910 1.0907 1.1144∗ 1.1193∗

3 0.8964 0.8866 1.1113∗ 1.0922∗ 1.1041∗ 1.1226∗

4 0.8888 0.8797 1.1110∗ 1.0625 1.1000∗ 1.0894
36 1 1.0834 1.0035 1.1689∗ 1.1659 1.2277∗ 1.2053∗

2 0.8808 0.8750 1.1662 1.1783∗ 1.1813∗ 1.1846∗

3 0.8564 0.8416 1.1772∗ 1.1814∗ 1.1394 1.1904∗

4 0.8493 0.8332 1.1919∗ 1.1364 1.1388 1.1587
Broad Currencies (qBt ): Stationary Models ( q̂

FAR
t+j|t)

Price Variables Financial excl. Prices Total excluding Prices
j #Factors ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt ∆fPLSt ∆fPCt
1 1 0.9941 0.9939 1.0009 0.9956 0.9952 0.9968

2 0.9928 0.9912 0.9941 0.9919 0.9898 0.9861
3 0.9940 0.9901 0.9937 0.9802 0.9829 0.9805
4 0.9820 1.0004 0.9804 0.9746 0.9852 0.9800

12 1 0.9998 1.0019 1.0565∗ 1.0505 1.0347 1.0418
2 0.9829 0.9484 1.0528∗ 1.0482 1.0438 1.0413
3 0.9644 0.9465 1.0617∗ 1.0436 1.0426 1.0350
4 0.9518 0.9371 1.0552∗ 1.0041 1.0366 1.0382

24 1 0.9918 0.9994 1.1047∗ 1.0977 1.0932 1.1138∗

2 0.9332 0.8805 1.0969 1.0915 1.1120∗ 1.1090∗

3 0.8809 0.8699 1.1145∗ 1.0870 1.1074∗ 1.1112∗

4 0.8712 0.8650 1.0950 1.0495 1.0916 1.0883
36 1 0.9636 0.9661 1.1390 1.1362 1.1508∗ 1.1860∗

2 0.8617 0.8079 1.1347 1.1461∗ 1.1873∗ 1.1684∗

3 0.8075 0.7823 1.1480∗ 1.1499∗ 1.1543∗ 1.1762∗

4 0.7978 0.7766 1.1237 1.0858 1.1384 1.1658∗

Note: We report the RRMSPE statistics employing a rolling window scheme with a 50% sample
split point. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model with k factors. RRMSPE statistics in bold
denote that the competing model outperforms the benchmark RW model. ∗ indicates that the
factor model outperforms both the AR and RW benchmark models.
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Table 11. j-Period ahead Out-of-Sample Predictability: PPP Based Models

Major Currencies (qMt )
Non-Stationary Models ( q̂FRWt+j|t) Stationary Models ( q̂FARt+j|t)

j CSA CSA
∆fP,Ft 1 0.9993 1.0018∗

12 0.9788 1.0421∗

24 0.9693 1.0901
36 0.9590 1.1620

j PLS PC PLS PC
∆fP,Dt 1 0.9928 0.9973 0.9881 0.9978

12 0.9660 0.9899 0.9850 1.0457∗

24 0.9539 0.9688 1.0270 1.0875
36 0.9201 0.9392 1.1312 1.1636

Broad Currencies (qBt )
Non-Stationary Models ( q̂FRWt+j|t) Stationary Models ( q̂FARt+j|t)

j CSA CSA
∆fP,Ft 1 1.0017 1.0042∗

12 0.9857 1.0496
24 0.9755 1.0958
36 0.9596 1.1317

PLS PC PLS PC
∆fP,Dt 1 0.9972 0.9986 0.9939 0.9992

12 0.9845 0.9921 1.0006 1.0480
24 0.9676 0.9773 1.0219 1.0904
36 0.9260 0.9434 1.0750 1.1350

Note: ∆fP,Ft is the cross-section average of broad range panel of relative prices with respect to

the US, starting from 1973M1 to 2018 M12. ∆fP,Dt is the first common factor from a panel of
relative prices of developed countries with respect to the US, starting from 1973 M1 to 2018
M12. We report the RRMSPE statistics employing a rolling window scheme and a 50% sample
split. RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean
squared prediction error (RMSPE ) from the benchmark random walk (RW) model divided by
the RMSPE from each competing model. RRMSPE statistics in bold denote that the competing
model outperforms the benchmark RW model. ∗ indicates that the factor model outperforms
both the AR and RW benchmark models.
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Table 12. j-Period ahead Out-of-Sample Predictability: UIP Based Models

Major Currencies (qMt )
Non-Stationary Models ( q̂FRWt+j|t) Stationary Models ( q̂FARt+j|t)

j CSA CSA
∆fU,Ft 1 1.0033 1.0046∗

12 0.9784 1.0406
24 0.9695 1.0920∗

36 0.9619 1.1716∗

j PLS PC PLS PC
∆fU,St 1 1.0093∗ 1.0115∗ 1.0105∗ 1.0138∗

12 0.9639 0.9648 1.0024 1.0065
24 0.9041 0.9079 0.9241 0.9330
36 0.8162 0.8249 0.8935 0.8989

Broad Currencies (qBt )
Non-Stationary Models ( q̂FRWt+j|t) Stationary Models ( q̂FARt+j|t)

j CSA CSA
∆fU,Ft 1 1.0050 1.0063∗

12 0.9858 1.0517∗

24 0.9766 1.1008
36 0.9649 1.1425∗

j PLS PC PLS PC
∆fU,St 1 1.0139∗ 1.0163∗ 1.0138∗ 1.0171∗

12 0.9495 0.9520 0.9885 0.9926
24 0.8869 0.8899 0.9003 0.9098
36 0.8050 0.8080 0.8114 0.8200

Note: ∆fU,Ft is the cross-section average of broad range panel of interest rate spreads with

respect to the US, starting from 1973M1 to 2018 M12. ∆fU,St denotes the first common factor
from broad range panel of interest rate spreads with respect to the US starting from 1985
M8 to 2018 M12. Sample split point is 50%, but results were similar with a 70% split point
specification. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model. RRMSPE statistics in bold denote that
the competing model outperforms the benchmark RW model. ∗ indicates that the factor model
outperforms both the AR and RW benchmark models.
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Table 13. j-Period ahead Out-of-Sample Predictability: RIRP Based Models

Major Currencies (qMt )
Non-Stationary Models ( q̂FRWt+j|t) Stationary Models ( q̂FARt+j|t)

j CSA CSA
∆fR,Ft 1 0.9988 0.9978

12 0.9860 1.0268
24 0.9765 1.0890
36 0.9584 1.1639

j PLS PC PLS PC
∆fR,St 1 0.9922 0.9917 0.9949 0.9953

12 0.9599 0.9510 0.9723 0.9739
24 0.8939 0.8885 0.8444 0.8618
36 0.8249 0.8221 0.7685 0.7895

Broad Currencies (qBt )
Non-Stationary Models ( q̂FRWt+j|t) Stationary Models ( q̂FARt+j|t)

j CSA CSA
∆fR,Ft 1 0.9999 0.9972

12 0.9921 1.0122
24 0.9926 1.0557
36 0.9799 1.0716

j PLS PC PLS PC
∆fR,St 1 0.9874 0.9871 0.9864 0.9873

12 0.9366 0.9231 0.9414 0.9453
24 0.8595 0.8553 0.8286 0.8472
36 0.7770 0.7770 0.7228 0.7503

Note: ∆fR,Ft is the cross-section average of broad range panel of interest rate spreads with

respect to the US, starting from 1973M2 to 2018 M12. ∆fR,St denotes the first common factor
from broad range panel of interest rate spreads with respect to the US starting from 1985
M8 to 2018 M12. Sample split point is 50%, but results were similar with a 70% split point
specification. RRMSPE denotes the ratio of the root mean squared prediction errors, which is
the mean squared prediction error (RMSPE ) from the benchmark random walk (RW) model
divided by the RMSPE from each competing model. RRMSPE statistics in bold denote that
the competing model outperforms the benchmark RW model. ∗ indicates that the factor model
outperforms both the AR and RW benchmark models.
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Figure 1. Real Exchange Rates and Common Factor Estimates

Note: We obtained the US dollar real exchange rates from the FRED. We report the first level

common factor estimates that were recovered by cumulatively summation of differenced factors.

Partial Least Squares (PLS) factors are target specific, thus we separately obtained factors for

the major and broad currencies exchange rates.
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Figure 2. Cumulative R2 Values of PC (solid) and PLS Factors

Note: We regress the real exchange rate on each factor and obtain the R2 statistics. Since we

use orthogonalized factors, we report the cumulative R2 values.
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Figure 3. Marginal R2 Analysis for PC (line) and PLS Factors (bar)

Note: We report the R2 values that were obtained by regressing each predictor on the common

factor estimate. That is, the horizontal axis is the predictor IDs.
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Figure 4. Marginal R2 Analysis for PC (line) and PLS Factors (bar)

Note: We report the R2 values that were obtained by regressing each predictor on the common

factor estimate. That is, the horizontal axis is the predictor IDs.
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Figure 5. Marginal R2 Analysis for PC (line) and PLS Factors (bar)

Note: We report the R2 values that were obtained by regressing each predictor on the common

factor estimate. That is, the horizontal axis is the predictor IDs.
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Figure 6. Quantile Regression Results - Contemporaneous

Note: We report the quantile regression coefficient estimate of the first PLS common factor

with the 90% confidence band that are obtained via nonparametric bootstrap. We chose 5, 25,

50, 75, and 95 percentiles. The shaded areas indicate the 90% confidence bands of the ordinary

least squares coefficient estimate. The first two rows are for the major real exchange rate, while

the last two rows are for the broad real exchange rate.
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Figure 7. j-Period ahead Out-of-Sample Predictability: Major Currencies (qMt )

Note: We report the RRMSPE statistics obtained via a rolling window scheme with a 50%

sample split point. RRMSPE denotes the ratio of the root mean squared prediction errors,

which is the mean squared prediction error (RMSPE) from the benchmark random walk (RW)

model divided by the RMSPE from each competing model. By construction, the RRMSPE of

the RW model is one and the values that exceed 1 imply that the model outperforms the RW

model.
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Figure 8. j-Period ahead Out-of-Sample Predictability: Broad Currencies (qBt )

Note: We report the RRMSPE statistics obtained via a rolling window scheme with a 50%

sample split point. RRMSPE denotes the ratio of the root mean squared prediction errors,

which is the mean squared prediction error (RMSPE) from the benchmark random walk (RW)

model divided by the RMSPE from each competing model. By construction, the RRMSPE of

the RW model is one and the values that exceed 1 imply that the model outperforms the RW

model.
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Figure 9. j-Period ahead Out-of-Sample Predictability: Labor Factors (qMt )

Note: We report the RRMSPE statistics obtained via a rolling window scheme with a 50%

sample split point. RRMSPE denotes the ratio of the root mean squared prediction errors,

which is the mean squared prediction error (RMSPE) from the benchmark random walk (RW)

model divided by the RMSPE from each competing model. By construction, the RRMSPE of

the RW model is one and the values that exceed 1 imply that the model outperforms the RW

model.
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Figure 10. j-Period ahead Out-of-Sample Predictability: Labor Factors (qBt )

Note: We report the RRMSPE statistics obtained via a rolling window scheme with a 50%

sample split point. RRMSPE denotes the ratio of the root mean squared prediction errors,

which is the mean squared prediction error (RMSPE) from the benchmark random walk (RW)

model divided by the RMSPE from each competing model. By construction, the RRMSPE of

the RW model is one and the values that exceed 1 imply that the model outperforms the RW

model.
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Figure 11. j-Period ahead Out-of-Sample Predictability: Price Factors (qMt )

Note: We report the RRMSPE statistics obtained via a rolling window scheme with a 50%

sample split point. RRMSPE denotes the ratio of the root mean squared prediction errors,

which is the mean squared prediction error (RMSPE) from the benchmark random walk (RW)

model divided by the RMSPE from each competing model. By construction, the RRMSPE of

the RW model is one and the values that exceed 1 imply that the model outperforms the RW

model.
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Figure 12. j-Period ahead Out-of-Sample Predictability: Price Factors (qBt )

Note: We report the RRMSPE statistics obtained via a rolling window scheme with a 50%

sample split point. RRMSPE denotes the ratio of the root mean squared prediction errors,

which is the mean squared prediction error (RMSPE) from the benchmark random walk (RW)

model divided by the RMSPE from each competing model. By construction, the RRMSPE of

the RW model is one and the values that exceed 1 imply that the model outperforms the RW

model.
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Appendix

Figure A1. Marginal R2 Analysis for PC (line) and PLS Factors (bar)

Note: We report the R2 values that were obtained by regressing each predictor on the common

factor estimate. That is, the horizontal axis is the predictor IDs.
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Figure A2. Marginal R2 Analysis for PC (line) and PLS Factors (bar)

Note: We report the R2 values that were obtained by regressing each predictor on the common

factor estimate. That is, the horizontal axis is the predictor IDs.
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Figure A3. Marginal R2 Analysis for PC (line) and PLS Factors (bar)

Note: We report the R2 values that were obtained by regressing each predictor on the common

factor estimate. That is, the horizontal axis is the predictor IDs.
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Figure A4. Quantile Regression Results - 12 Month Forecast

Note: We report the quantile regression coefficient estimate of the first common factor with the

90% confidence band that are obtained via nonparametric bootstrap. We chose 5, 25, 50, 75,

and 95 percentiles. The shaded areas indicate the 90% confidence bands of the ordinary least

squares coefficient estimate.
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Figure A5. Quantile Regression Results - 24 Month Forecast

Note: We report the quantile regression coefficient estimate of the first common factor with the

90% confidence band that are obtained via nonparametric bootstrap. We chose 5, 25, 50, 75,

and 95 percentiles. The shaded areas indicate the 90% confidence bands of the ordinary least

squares coefficient estimate.
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Figure A6. Quantile Regression Results - 36 Month Forecast

Note: We report the quantile regression coefficient estimate of the first common factor with the

90% confidence band that are obtained via nonparametric bootstrap. We chose 5, 25, 50, 75,

and 95 percentiles. The shaded areas indicate the 90% confidence bands of the ordinary least

squares coefficient estimate.
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