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Abstract

We present a factor augmented forecasting model for assessing the financial

vulnerability in Korea. Dynamic factor models often extract latent common

factors from a large panel of time series data via the method of the principal

components (PC). Instead, we employ the partial least squares (PLS) method

that estimates target specific common factors, utilizing covariances between

predictors and the target variable. Applying PLS to 198 monthly frequency

macroeconomic time series variables and the Bank of Korea’s Financial Stress

Index (KFSTI), our PLS factor augmented forecasting models consistently

outperformed the random walk benchmark model in out-of-sample prediction

exercises in all forecast horizons we considered. Our models also outperformed

the autoregressive benchmark model in short-term forecast horizons. We ex-

pect our models would provide useful early warning signs of the emergence of

systemic risks in Korea’s financial markets.
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1 Introduction

Financial crises often come to a surprise realization with no systemic warnings.

Furthermore, as Reinhart and Rogoff (2014) point out, harmful spillover effects on

other sectors of the economy are likely to be severe because recessions followed by

financial crises are often longer and deeper than other economic downturns. To avoid

financial crises, Reinhart and Rogoff (2009) suggest to use an early-warning system

(EWS) that alerts policy makers and financial market participants to incoming

danger signs.

To design an EWS, it is crucially important to obtain a proper measure of the

financial vulnerability that quantifies the potential risk in financial markets. One

may consider the conventional Exchange Market Pressure (EMP) index proposed

by Girton and Roper (1977). Instead, this paper employs an alternative measure

known as financial stress index (FSTI) that is rapidly gaining popularity since the

recent financial crisis.

The EMP index is computed using a small number of monetary variables such

as exchange rate depreciations and changes in international reserves. On the other

hand, FSTI is constructed utilizing a broad range of key financial market variables.

In the US, 12 financial stress indices have currently become available (Oet, Eiben,

Bianco, Gramlich, and Ong (2011)) since the recent financial crisis. The Bank of

Korea also developed FSTI (KFSTI) in 2007 and started to report it on a yearly

basis in their Financial Stability Report.

In this paper, we employ the monthly frequency KFSTI data as a proxy variable

for financial market risk in Korea, and propose an out-of-sample forecasting pro-

cedure that extracts potentially useful predictive contents for KFSTI from a large

panel of monthly frequency macroeconomic data.1

Conventional approaches to predict financial crises include the following. Frankel

and Saravelos (2012) and Sachs, Tornell, and Velasco (1996) used linear regression

approaches to test the statistical significance of various economic variables on the

occurrence of historical crisis episodes. Others employed discrete choice models

including parametric probit or logit models (Frankel and Rose (1996); Eichengreen,

Rose, and Wyplosz (1995); Cipollini and Kapetanios (2009)) and nonparametric

1High frequency KFSTI data are for internal use only. We appreciate the Bank of Korea for
giving permission to use the monthly frequency data.
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signals approach (Kaminsky, Lizondo, and Reinhart (1998); Edison (2003); EI-Shagi,

Knedlik, and von Schweinitz (2013); Christensen and Li (2014)).

Our forecasting procedure is different from these earlier studies in the sense that

we extract potentially useful predictive contents for a new measure of the financial

vulnerability such as the KFSTI from a broad range of macroeconomic time series

data. Our proposed method is suitable in a data-rich environment, and may be

considered as an alternative to dynamic factor models that are widely employed in

the recent macroeconomic forecasting literature.

Since the influential work of Stock and Watson (2002), factor models often utilize

principal components (PC) analysis to extract latent common factors from a large

panel of predictor variables. Estimated factors, then, can be used to formulate

forecasts of a target variable employing linear regressions of the target on estimated

common factors. It should be noted that the PC method constructs common factors

based solely on predictor variables.2 Boivin and Ng (2006), however, pointed out

that the performance of the PC method may be poor in forecasting the target

variable if predictive contents are in a certain factor that may be dominated by

other factors.

To overcome this issue, we employ the partial least squares (PLS) method that

is proposed by Wold (1982). The method constructs target specific common factors

from linear, orthogonal combinations of predictor variables taking the covariance

between the target variable and predictor variables into account. Even though

Kelly and Pruitt (2015) demonstrate that PC and PLS generate asymptotically

similar factors when the data has a strong factor structure, Groen and Kapetanios

(2016) show that PLS models outperform PC-based models in forecasting the target

variable in the presence of a weak factor structure.

In this paper, we estimate multiple common factors using PLS from a large

panel of 198 monthly frequency macroeconomic data in Korea and the KFSTI from

October 2000 to June 2016. We apply PLS to the first differenced macroeconomic

data and the KFSTI to avoid issues that are associated with nonstationarity in

the data.3 Then, we augment two types of benchmark models, the nonstationary

2Cipollini and Kapetanios (2009) employed the dynamic factor model via the PC method for
their out-of-sample forecasting exercises for financial crisis episodes.

3Bai and Ng (2004) propose a similar method for their panel unit root test procedure that uses
PC to estimate latent factors.

3



random walk (RW) and the stationary autoregressive (AR) models, with estimated

PLS factors to out-of-sample forecast the KFSTI foreign exchange market index

(KFSTI-FX) and the KFSTI stock market index (KFSTI-Stock).

We evaluate the out-of-sample forecast accuracy of our PLS-based models rela-

tive to these benchmark models using the ratio of the root mean squared prediction

errors (RRMSPE) and the Diebold-Mariano-West (DMW ) test statistics. We em-

ployed both the recursive (expanding window) method and the fixed-size rolling

window method. Based on the RRMSPE and the DMW statistics, our models con-

sistently outperform the benchmark RW models in out-of-sample predictability in

all forecast horizons we consider for up to one year. On the other hand, our models

outperform the AR benchmark model only in short-term forecast horizons.

Financial market stability is viewed as an important objective of many central

banks. To the best of our knowledge, the present paper is the first to predict the

emergence of systemic risks in financial markets in Korea using PLS-based dynamic

factor models.4 We expect our models help provide useful early warning indicators of

financial distress that may become prevalent in Korea’s financial markets, resulting

in harmful spillovers to other sectors of the economy.

The rest of the paper is organized as follows. Section 2 explains how we ex-

tract latent common factors and formulate out-of-sample forecasts using PLS factor-

augmented forecasting models. We also describe our out-of-sample forecast strate-

gies and model evaluation methods. In Section 3, we provide data descriptions and

report our major empirical findings. Section 4 concludes.

2 The Econometric Method

2.1 The Method of the Principal Components

Consider a panel ofN macroeconomic time series predictor variables, x = [x1,x2, ...,xN ],

where xi = [xi,1, xi,2, ..., xi,T ]′ , i = 1, ..., N . Dynamic factor models that are based

on the principal component (PC) method (e.g., Stock and Watson (2002)) assume

4Kim, Shi, and Kim (2016) implemented similar forecasting exercises using factor estimates
from the PC method, which utilizes 198 predictor variables but not the target variable.
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the following factor structure for x. Abstracting from deterministic terms,

xi,t = λ
′

ift + εi,t, (1)

where ft = [f1,t, f2,t, · · · , fR,t]
′
is an R × 1 vector of latent common factors at time

t and λi = [λi,1, λi,2, · · · , λi,R]
′
denotes an R× 1 vector of time-invariant associated

factor loading coeffi cients. εi,t is the idiosyncratic error term.

As shown by Nelson and Plosser (1982), most macroeconomic time series vari-

ables are better approximated by a nonstationary stochastic process. Further, Bai

and Ng (2004) pointed out that the PC estimator for ft from (1) may be inconsis-

tent when εi,t is an integrated process. As Bai and Ng (2004) suggested, one may

estimate ft and λi via the PC method for the first-differenced data. For this, rewrite

(1) as follows.

∆xi,t = λ
′

i∆ft + ∆εi,t (2)

for t = 2, · · · , T . After normalizing ∆x = [∆x1,∆x2, ...,∆xN ], we apply PC to

∆x∆x
′
to obtain the factor estimates ∆f̂t along with their associated factor loading

coeffi cients λ̂i.5 Estimates for the idiosyncratic components are naturally given by

the residuals ∆ε̂i,t = ∆xi,t − λ̂
′

i∆f̂t. Level variables are recovered as follows,

ε̂i,t =
t∑
s=2

∆ε̂i,s, f̂t =
t∑
s=2

∆f̂s (3)

2.2 The Partial Least Squares Method

Partial least squares (PLS) models for a scalar target variable yt are motivated by

the following linear regression model. Abstracting from deterministic terms,

yt = ∆x
′

tβ + ut, (4)

where ∆xt = [∆x1,t,∆x2,t, ...,∆xN,t]
′ is an N × 1 vector of predictor variables at

time t = 1, ..., T , β is an N × 1 vector of associated coeffi cients, and ut is an error

term. Note that we use the first-differenced predictor variables, assuming that xt is

a vector of integrated processes.

5We first normalize the data prior to estimations, because the method of the principal compo-
nents is not scale invariant.
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PLS models are useful especially whenN is large. Instead of running a regression

for (4), one may employ a data dimensionality reduction method via the following

regression with an R×1 vector of components∆ct = [∆c1,t,∆c2,t, ...,∆cR,t]
′
, R < N

as follows,

yt = ∆x
′

twθ + ut (5)

=∆c
′

tθ + ut

That is,

∆ct = w
′
∆xt, (6)

andw = [w1,w2, ...,wR] is anN×Rmatrix of each columnwr = [w1,r, w2,r, ..., wN,r]
′
,

r = 1, ..., R, is anN×1 vector of weights on predictor variables for the rth component

or factor. θ is an R× 1 vector of PLS regression coeffi cients.

PLS regression minimizes the sum of squared residuals from the equation (5) for

θ instead of β in (4). It should be noted, however, that we do not directly utilize θ

in the present paper. In what follows, we employ a two-step forecasting method so

that our models are comparable with the PC-based forecasting models. That is, we

estimate ∆ct via the PLS method, then augment our benchmark forecasting model

with PLS factor estimates for ∆ct.

There are many available PLS algorithms (Andersson (2009)) that work well.

Among others, one may use the algorithm proposed by Helland (1990) to forecast

the j-period ahead target variable yt+j, j = 1, 2, .., k. One may obtain these factors

recursively as follows. First, ∆c1,j,t is determined by the following linear combina-

tions of the predictor variables in ∆xt.

∆ĉ1,j,t =

N∑
i=1

wi,j,1∆xi,t, (7)

where the loading (weight) wi,j,1 is given by Cov(yt+j,∆xi,t).

Next, regress yt+j and∆xi,t on∆ĉ1,j,t to get residuals, ỹt+j and∆x̃i,t, respectively.

The second factor estimate ∆ĉ2,j,t is then obtained similarly as in (7) with wi,j,2 =

Cov(ỹt+j,∆x̃i,t). We repeat until the Rth factor ∆ĉR,j,t is obtained.
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2.3 The PLS Factor Forecast Models

Our first PLS factor forecast model, the PLS-RW model, is motivated by a nonsta-

tionary random walk process augmented by ∆ĉt. Abstracting from deterministic

terms,

yPLSRWt+j = yt + γ
′

j∆ĉt + et+j, j = 1, 2, .., k, (8)

that is, when γj = 0, yt obeys the random walk (RW) process.6

Since the coeffi cient on yt is fixed, we cannot use the unrestricted least squares

estimator for (8). We resolve this problem by regressing yt+j − yt on ∆ĉt first to

obtain the consistent estimate γ̂j.
7 Adding yt back to the fitted value, we obtain

the following j-period ahead forecast for yt+j,

ŷPLSRWt+j|t = yt + γ̂
′

j∆ĉt (9)

The natural benchmark (BM) model of the PLS-RW model (8) is the following

RW model.

yBMRW
t+1 = yt + ηt+1, (10)

where et+j in (8) is a partial sum of the white noise process ηt, that is, et+j =∑j
s=1 ηt+s. It should be noted that our PLS-RWmodel (8) nests this RW benchmark

model (10) when γj = 0. The j-period ahead forecast from this benchmark RW

model is,

ŷBMRW

t+j|t = yt (11)

Our second PLS factor forecast model, the PLS-AR model, is motivated by a

stationary AR(1)-type stochastic process augmented by PLS factor estimates ∆ĉt.

Abstracting from deterministic terms,

yPLSARt+j = αjyt + β
′

j∆ĉt + ut+j, j = 1, 2, .., k, (12)

6Note that this specification is inconsistent with our earlier specification described in (4) that
requires stationarity of the target variable yt. Practically speaking, the random walk type models
often perform well in forecasting persistent variables such as the KFSTI. Furthermore, it is of-
ten diffi cult to distinguish highly persistent or near unit root variables from stationary variables
(observational equivalence). With these in mind, we employ two mutually exclusive stochastic
processes described in (8) and (12). We thank the referee who pointed out this issue.

7That is, we assume that yt+j − yt is stationary.
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where αj is less than one in absolute value for stationarity.

We again employ a direct forecasting approach by regressing the j-period ahead

target variable (yt+j) directly on the current period target variable (yt) and the

estimated factors (∆ĉt). Note that (12) is an AR(1) process for j = 1 extended

by covariates ∆ĉt. Applying the ordinary least squares (LS) estimator for (12), we

obtain the following j-period ahead forecast for the target variable,

ŷPLSARt+j|t = α̂jyt + β̂
′

j∆ĉt, (13)

where α̂j and β̂j are the least squares coeffi cient estimates.

Naturally, the benchmark model for the PLS-AR (12) is the following stationary

AR(1)-type or simply the AR model,

yBMAR
t+j = αjyt + ut+j, j = 1, 2, .., k, (14)

which relates yt+j directly with the current value yt. The j-period ahead forecast

from this model is,

ŷBMAR
t+j = α̂jyt, (15)

where α̂j is obtained by regressing yt+j directly on yt as in (14).8 Note that the

PLS-AR model (12) nests the stationary benchmark model (14) when ∆ĉt does not

contain any useful predictive contents for yt+j, that is, βj = 0.

2.4 Out-of-Sample Forecast Strategies

We first implement out-of-sample forecast exercises employing a recursive (expand-

ing window) scheme. After estimating PLS factors {∆ĉt}T0t=1 using the initial T0 < T

observations, {yt,∆xi,t}T0t=1, i = 1, 2, ..., N , we obtain the j−period ahead out-of-
sample forecast for the target variable, yT0+j by (9) or (13). Then, we expand the

data by adding one more observation, {yt,∆xi,t}T0+1t=1 , i = 1, 2, ..., N , and re-estimate

{∆ĉt}T0+1t=1 which is used to formulate the next forecast, yT0+j+1. We repeat this until

we forecast the last observation, yT . We implement forecasting exercises under this

expanding window scheme for up to 12-month forecast horizons, j = 1, 2, ..., 12.

8One may employ a recursive approach with an AR(1) model, yt+1 = αyt + εt+1. Given the
estimate of the persistence parameter, one may formulate the j-period ahead forecast by α̂jyt.
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We also employ a fixed-size rolling window method, which performs better than

the recursive method in the presence of structural breaks. After we obtain the first

forecast yT0+j using the initial T0 < T observations, {yt,∆xi,t}T0t=1, i = 1, 2, ..., N , we

add one observation but drop one earliest observation for the next round forecasting.

That is, we re-estimate {∆ĉt}T0+1t=2 from {yt,∆xi,t}T0+1t=2 , i = 1, 2, ..., N , maintaining

the same number of observations (T0) to obtain the second round forecast, yT0+j+1.

Again, we repeat until we forecast the last observation, yT .

For model evaluations regarding the out-of-sample prediction accuracy, we use

the ratio of the root mean square prediction error (RRMSPE) defined as follows,

RRMSPE(j) =

√
1

T−T0−j
∑T

t=T0+j

(
εBMm

t+j|t

)2
√

1
T−T0−j

∑T
t=T0+j

(
εPLSmt+j|t

)2 , m = AR,RW, (16)

where

εBMm

t+j|t = yt+j − ŷBMm

t+j|t , ε
PLSm
t+j|t = yt+j − ŷPLSmt+j|t (17)

Note that our PLS models outperform the benchmark models when RRMSPE is

greater than 1.9

We supplement our analyses by employing the Diebold-Mariano-West (DMW )

test. For this, we define the following loss differential function,

dt = (εBMm

t+j|t )2 − (εPLSmt+j|t )2, m = AR,RW, (18)

where the squared loss function can be replaced with the absolute value loss function.

The DMW statistic is defined as follows to test the null of equal predictive

accuracy, that is, H0 : Edt = 0,

DMW (j) =
d̄√

Âvar(d̄)

, (19)

where d̄ is the sample average, d̄ = 1
T−T0−j

∑T
t=T0+j

dt. In the presence of serial

9We also employed a similar approach with the ratio of the root absolute mean square prediction
error (RAMSPE). That is, the loss function is defined with the absolute value instead of the squared
value. Results are qualitatively similar and available upon requests from authors.
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correlations, Âvar(d̄) denotes the long-run variance of d̄,

Âvar(d̄) =
1

T − T0

q∑
i=−q

k(i, q)Γ̂i, (20)

where k(·) is a kernel function with the bandwidth parameter q, and Γ̂i is the ith

autocovariance function estimate.

3 Empirical Findings

3.1 Data Descriptions

We employ the financial stress index (KFSTI) data to quantify the financial vul-

nerability in Korea. The Bank of Korea introduced the index in 2007 and report

KFSTI on a yearly basis in their Financial Stability Report. We obtained monthly

frequency data, which in principle are for internal use only.10 The data is available

from May 1995, but our sample period covers from October 2000 until August 2016

to obtain a large panel of predictor variables.

We use the following two KFSTI sub-indices, one for the foreign exchange market

(KFSTI-FX) and the other one for the stock market (KFSTI-Stock). We do not

report forecasting exercise results for the two other KFSTI sub-indices for the bond

market and for the financial industry, since our model performed relatively poorly

for these two indices. Such limited performances of our factor models might be

due to the fact that our common factors are extracted only from macroeconomic

variables even though the financial industries and bond markets are often influenced

by non-economic political factors.

Figure 1 provides graphs of the KFSTI-FX and the KFSTI-Stock. We note that

both indices exhibit a sharp spike during the recent financial crisis that began in

2008. KFSTI-Stock exhibits more frequent turbulent periods in comparison with

dynamics of the KFSTI-FX.

Figure 1 around here
10We obtained permission from the Bank of Korea to use the data for this research.
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We obtained 198 predictor variables from the Bank of Korea. Observations

are monthly frequency and span from October 2000 to August 2016. All variables

other than those in percent (e.g., interest rates and unemployment rates) are log-

transformed prior to estimations. We categorized these 198 time series data into 13

groups as summarized in Table 1.

Group #1 includes 14 domestic and world nominal interest rates. Groups #2

through #4 are an array of prices and monetary aggregate variables, while group

#5 consist of bilateral nominal exchange rates. That is, groups #1 through #5

represent nominal sector variables in Korea. On the other hand, groups #6 through

#11 entail various kinds of real activity variables such as production, inventory, and

labor market variables. The last two groups represent business condition indices

and stock market indices in Korea, respectively.

Table 1 around here

3.2 Evaluations of the Model

This subsection discusses the in-sample fit and the out-of-sample prediction perfor-

mance of our PLS factor models relative to those of the benchmark and PC factor

models.

3.2.1 In-Sample Fit Analysis

Figure 2 reports estimated level PC factors, f̂t =
∑t

s=2 ∆f̂s, for up to 6 factors, along

with their associated factor loading coeffi cient estimates (λ̂). In Figures 3 and 4, we

report level PLS factors ĉt =
∑t

s=2 ∆ĉs for the KFSTI-FX and the KFSTI-Stock,

respectively, and their weight matrix estimates (ŵ). Note that we report two sets

of PLS factors whereas only one set of PC factors is presented. This is because

the PLS method utilizes the covariance between the predictor variables and the

target variable, whereas the PC method does not consider the target variable when

it extracts the common factors.

We noticed that PC factors are very different from PLS factors for each KF-

STI index. Further, we note that λ̂ estimates are very different from ŵ, meaning

11



that PLS and PC factor estimates are obtained from utilizing different combina-

tions of the predictor variables x. Since we are mainly interested in out-of-sample

predictability performances of the PLS method relative other models, we do not

attempt to trace the sources of these factors. However, distinct factor estimates

from the PLS and the PC methods imply that the performance of these methods

would differ in out-of-sample forecasting exercises we report in what follows.

Figures 2, 3, and 4 around here

We also report R2 values in Figure 5, obtained from LS regressions of the target

variable yt on estimated factors, ∆ĉt and ∆f̂t, for up to 12 factors. Not surprisingly,

PLS factors provide much better in-sample fit performance than PC factors, because

∆ĉt is estimated using the covariance between the target and the predictor variables.

For example, R2 from ∆ĉ1 is over 0.3, whereas that from ∆f̂1 is slightly over 0.02

for the KFSTI-FX. In the case of the KFSTI-Stock, R2 from ∆ĉ1 is about 0.2, while

∆f̂1 virtually has no explanatory power.

Note that ∆f̂10 and ∆f̂2 have the highest R2 for the KFSTI-FX and for the

KFSTI-Stock, respectively, whereas contributions of PLS factors are the highest

for the first factor estimate ∆ĉ1. That is, marginal R2 decreases when we regress

the target variable to the next PLS factors. This is because we extract orthogonal

PLS factors sequentially, utilizing the remaining covariances of the target and the

predictor variables. Since the PC method uses only the predictor variables without

considering the target variable, marginal R2 values do not necessarily decrease.

Cumulative R2 value with up to 12 PLS factors is about 0.8 for both indices, whereas

that with PC factors is less than 0.3 and 0.2 for the foreign exchange index and the

stock index, respectively. In a nutshell, the PLS method yields superior in-sample

fit performance in comparison with the PC method.

Figure 5 around here
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3.2.2 Out-of-Sample Forecasting Performance

In Tables 2 and 3, we report RRMSPE’s and the DMW statistics of the PLS-

RW forecasting model (9) relative to the performance of the RW benchmark model

(11) for the KFSTI-FX and the KFSTI-Stock, respectively. We implement out-of-

sample forecast exercises using up to 12 (k) factor estimates obtained from PLS for

{yt+j,∆xi,t} for up to 12-month forecast horizons (h). We used p50% for the sample
split point, that is, initial 50% observations were used to formulate the first out-of-

sample forecast in implementing forecasting exercises via the recursive (expanding

window) scheme as well as the fixed-size rolling window scheme.

Most RRMSPE values are strictly greater than 1, and the DMW test rejects the

null of equal predictability favoring our factor models. That is, our PLS-RW model

consistently outperforms the RW benchmark model in all forecast horizons and in

both the recursive and the rolling window method. It should be noted that we

use critical values from McCracken (2007) instead of the asymptotic critical values

from the standard normal distribution, because the PLS-RW model nests the RW

benchmark model.11

Tables 2 and 3 around here

Tables 4 and 5 report the forecasting performance of the PLS-AR model (13)

relative to the AR benchmark model (15). Results sharply contrast with earlier

results reported in Tables 2 and 3. The PLS-AR model outperforms the AR model

only in the short-term forecast horizons. More specifically, the PLS-AR model

outperforms the AR model in 1-month ahead out-of-sample forecast for the KFSTI-

FX under the recursive forecasting scheme, while the AR model performs better in

most other cases. The PLS-AR model performs relatively better for the KFSTI-

Stock, as RRMSPE values are greater than 1 at least in one-month ahead forecast

for the index under the both schemes.

Even though the performance of the PLS-AR model relative to the AR bench-

mark is not overwhelmingly good, it should be noted that the PLS-AR model can

still provide useful early warning indicators of incoming danger to Korea’s finan-

cial market. Financial crises often occur abruptly and unexpectedly. Given such

11Asymptotic critical values are not valid when one model nests the other model.

13



tendency, it is good to have an instrument that generates warning signs before the

systemic risks materialize in the financial market.

Tables 4 and 5 around here

We repeat the same exercises using combinations of ∆ĉt and ∆f̂t and report

the results in Tables 6 through 9. That is, we extended the benchmark forecasting

models using equal numbers of factors obtained from the PLS and the PC methods.

For example, k = 4 means that ∆ĉ1, ∆ĉ2, ∆f̂1, and ∆f̂2 are used as condensed pre-

dictor variables. Results are qualitatively similar to previous performances reported

in Tables 2 through 5. That is, marginal contributions of using PC factors (∆f̂t) in

addition to PLS factors (∆ĉt) are mostly negligibly small.

Tables 6 through 9 around here

3.2.3 Comparisons with the PC Models

This sub-section compares the out-of-sample prediction performances of the PLS

models relative to those of the PC models using the RRMSPE criteria, the RMSPE

from the PLS model divided by the RMSPE from the corresponding PC model.

That is, RRMSPE greater than 1 implies a better performance of the PLS model.

As can be seen in Figure 6 for the KFSTI-FX, the PLS-RW model outperforms

the PC-RW model in all forecast horizons we consider. It is interesting to see that

the PLS-RW model’s relative performance becomes better as we employ more factor

estimates or when forecast horizons become longer. On the other hand, we observed

qualitatively similar performance of the PLS-AR model and the PC-AR model in

predicting the KFSTI-FX, even though the PLS-AR model tend to perform better

in short-term forecast horizons with many factor estimates.

Figure 6 around here
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The PLS-RW model again demonstrates substantially better performance than

the PC-RW model in predicting the KFSTI-Stock in all forecast horizons under

both the recursive and the fixed-size rolling window schemes. Interestingly, the

PC-AR model overall outperforms the PLS-AR model for the KFSTI-Stock under

the recursive scheme, while the latter outperforms the former under the fixed-size

rolling window scheme. This seems to explain slight improvements in forecasting

performance, see Tables 5 and 9, under the recursive scheme when we combine PLS

and PC factors together.

Figure 7 around here

Lastly, we compare the performances of the PLS-AR model and the PLS-RW

model using the RRMSPE criteria. RRMSPE greater than 1 implies that the PLS-

AR model outperforms the PLS-RW model. Results are reported in Figure 8. It

should be noted that both PLS models perform similarly well in short-term forecast

horizons unless very small numbers of factors are employed. However, as the forecast

horizon increases, the PLS-AR model tend to outperform the PLS-RW model. Note

that the PLS-RW is based on the RW model, which is a "no change" prediction

model. If the KFSTI obeys a mean reverting stochastic process, RW type models

would not perform well in long-term forecast horizons. To check this possibility,

we employed the conventional ADF test, which rejected the null of nonstationarity

at the 5% significance level for both indices, confirming the conjecture described

earlier.12

Figure 8 around here

4 Concluding Remarks

This paper proposes a factor-augmented forecasting model for the systemic risks in

Korea’s financial markets using the partial least squares (PLS) method as an alterna-

tive to the method of the principal components (PC). Unlike PC factor models that

12Results are available upon requests.
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estimate common factors solely from predictor variables, the PLS approach gener-

ates the target specific common factors utilizing covariances between the predictors

and the target variable.

Taking the Bank of Korea’s Financial Stress Index (KFSTI) as a proxy variable

of the financial vulnerability in Korea, we applied PLS to a large panel of 198

monthly frequency macroeconomic variables and the KFSTI from October 2000 to

June 2016. Obtaining PLS common factors, we augmented the two benchmark

models, the random walk (RW) model and the stationary autoregressive (AR) type

model, with estimated PLS factors to out-of-sample forecast the KFSTI for the

foreign exchange market and the stock market. We then implemented an array of

out-of-sample prediction exercises using the recursive (expanding window) and the

fixed-size rolling window schemes for 1-month to 1-year forecast horizons.

We evaluate our proposed PLS factor-augmented forecasting models via the ra-

tio of the root mean squared prediction error and the Diebold-Mariano-West statis-

tics. Our PLS-RW models consistently outperform the nonstationary random walk

benchmark model. On the other hand, the PLS-AR forecasting models perform

better than the AR models only for short-term forecast horizons. That is, unlike

the PLS-RW model, the performance of the PLS-AR model is not overwhelmingly

better than its benchmark. However, it should be noted that the PLS-AR model,

and of course the PLS-RW model, can still provide potentially useful early warning

signs of financial distress before the systemic risks materialize in Korea’s financial

market within a month. Combining all together, the PLS factor models perform

much better than the PC factor models especially when the models are combined

with the nonstationary random walk benchmark model.
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Table 1. Macroeconomic Data Descriptions

Group ID Data ID Data Descriptions
#1 1-14 Domestic and World Interest Rates
#2 15-35 Exports/Imports Prices
#3 36-54 Producer/Consumer/Housing Prices
#4 55-71 Monetary Aggregates
#5 72-83 Bilateral Exchange Rates
#6 84-110 Manufacturers’/Construction New Orders
#7 111-117 Manufacturers’ Inventory Indices
#8 118-135 Housing Inventories
#9 136-157 Sales and Capacity Utilizations
#10 158-171 Unemployment/Employment/Labor Force Participation
#11 172-180 Industrial Production Indices
#12 181-186 Business Condition Indices
#13 187-198 Stock Indices
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Table 2. PLS-RW vs. RW: Foreign Exchange Market

ŷPLSRW

t+j|t = yt + γ̂
′

j∆ct vs. ŷBMRW

t+j|t = yt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
1 1 0.924 -1.447 1.028 1.327 6 1 0.993 -0.090 1.057 1.306

2 1.006 0.130 1.052 1.854 2 1.040 0.416 1.090 2.014
4 1.030 0.498 1.047 1.607 4 1.172 1.548 1.145 3.485
6 1.157 1.166 1.056 1.340 6 1.336 2.188 1.201 3.386
9 1.291 3.760 1.050 1.278 9 1.328 3.126 1.151 2.753
12 1.377 2.142 1.046 0.959 12 1.544 2.012 1.155 2.657

2 1 0.960 -0.558 1.019 0.806 8 1 0.985 -0.171 1.084 2.556
2 0.990 -0.143 0.979 -0.485 2 1.049 0.462 1.088 1.667
4 1.086 1.093 1.035 1.032 4 1.238 1.999 1.196 3.536
6 1.159 1.360 1.056 1.551 6 1.295 1.956 1.169 3.081
9 1.215 3.008 1.052 1.303 9 1.356 3.978 1.217 3.783
12 1.360 2.276 1.060 1.193 12 1.470 2.016 1.189 2.949

4 1 0.964 -0.456 1.033 0.640 10 1 0.992 -0.092 1.038 0.972
2 1.031 0.382 1.059 1.363 2 1.077 0.708 1.055 0.929
4 1.111 1.184 1.128 3.594 4 1.290 2.241 1.135 1.803
6 1.281 2.139 1.213 3.176 6 1.330 2.149 1.072 1.259
9 1.337 4.173 1.171 3.116 9 1.356 3.626 1.182 3.059
12 1.550 2.281 1.132 2.395 12 1.572 2.391 1.213 2.990

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The critical values are from McCracken (2007) to avoid size distortion because the benchmark model

is nested by our factor model.
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Table 3. PLS-RW vs. RW: Stock Market

ŷPLSRW

t+j|t = yt + γ̂
′

j∆ct vs. ŷBMRW

t+j|t = yt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
1 1 0.992 -1.241 0.993 -3.170 6 1 1.045 1.227 1.127 3.155

2 0.992 -0.980 1.009 0.933 2 1.078 1.242 1.271 3.553
4 0.992 -0.544 1.010 0.730 4 1.111 1.763 1.334 3.175
6 1.016 0.888 1.003 0.190 6 1.107 2.038 1.333 3.277
9 1.024 0.703 1.007 0.244 9 1.114 1.245 1.341 2.697
12 1.017 0.610 1.010 0.381 12 1.107 1.836 1.338 3.240

2 1 1.020 1.362 1.058 2.802 8 1 1.052 1.249 1.137 2.891
2 1.019 0.765 1.089 2.423 2 1.064 0.932 1.282 3.194
4 1.015 0.571 1.128 2.775 4 1.104 1.550 1.317 3.004
6 1.047 1.554 1.119 2.666 6 1.121 2.048 1.337 3.262
9 1.032 0.702 1.137 2.051 9 1.114 1.184 1.331 2.630
12 1.011 0.411 1.091 2.004 12 1.102 1.703 1.377 3.179

4 1 1.022 0.631 1.132 4.068 10 1 1.097 1.534 1.147 3.248
2 1.056 0.878 1.253 3.608 2 1.060 0.812 1.280 3.076
4 1.065 1.079 1.314 3.460 4 1.125 1.762 1.321 2.787
6 1.099 1.839 1.304 3.391 6 1.126 2.075 1.384 3.098
9 1.126 1.340 1.419 3.242 9 1.134 1.312 1.358 2.591
12 1.132 2.207 1.294 2.982 12 1.147 2.330 1.482 3.476

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The critical values are from McCracken (2007) to avoid size distortion because the benchmark model

is nested by our factor model.
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Table 4. PLS-AR vs. AR: Foreign Exchange Market

ŷPLSAR

t+j|t = α̂jyt + β̂
′

j∆ct vs. ŷBMAR

t+j|t = α̂jyt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
1 1 1.048 1.721 0.997 -0.320 6 1 1.022 0.602 0.953 -3.801

2 1.000 0.002 0.973 -1.839 2 0.989 -0.371 0.944 -2.565
4 1.001 0.262 0.995 -1.035 4 0.995 -0.135 0.968 -1.872
6 0.984 -0.527 0.993 -1.414 6 0.896 -2.981 0.984 -1.023
9 0.951 -2.547 0.998 -0.657 9 0.905 -2.576 0.997 -0.259
12 0.953 -1.333 0.996 -0.717 12 0.979 -0.502 0.969 -1.354

2 1 1.054 1.658 0.985 -0.970 8 1 1.029 0.710 0.954 -3.566
2 0.999 -0.044 0.955 -2.196 2 0.999 -0.043 0.938 -2.825
4 1.010 0.532 0.981 -1.647 4 1.031 0.900 0.972 -1.517
6 0.983 -0.428 0.991 -0.992 6 0.868 -2.883 0.954 -1.949
9 0.960 -2.237 1.005 0.582 9 0.907 -2.643 0.981 -0.910
12 0.963 -1.396 0.993 -0.457 12 0.963 -0.619 0.945 -1.714

4 1 1.019 0.703 0.978 -2.320 10 1 1.024 0.512 0.933 -3.466
2 1.001 0.039 0.962 -2.214 2 0.987 -0.315 0.923 -2.945
4 1.001 0.048 0.960 -3.191 4 1.066 1.579 0.934 -1.226
6 0.964 -0.878 0.988 -0.980 6 0.877 -2.568 0.897 -2.589
9 0.921 -2.291 1.025 0.976 9 0.837 -2.935 0.976 -0.689
12 0.941 -1.961 0.974 -1.363 12 0.993 -0.160 0.926 -2.081

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The critical values are from McCracken (2007) to avoid size distortion because the benchmark model

is nested by our factor model.
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Table 5. PLS-AR vs. AR: Stock Market

ŷPLSAR

t+j|t = α̂jyt + β̂
′

j∆ct vs. ŷBMAR

t+j|t = α̂jyt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
1 1 1.018 1.717 1.032 3.786 6 1 1.035 1.703 1.032 1.197

2 1.001 0.171 1.023 3.315 2 1.011 0.699 1.030 1.162
4 0.991 -1.763 1.037 3.116 4 1.012 0.727 0.976 -0.670
6 0.994 -3.829 1.032 2.585 6 0.991 -0.777 0.945 -1.276
9 0.992 -3.448 1.011 1.357 9 1.002 0.152 0.894 -1.614
12 0.992 -1.170 1.008 0.373 12 0.989 -0.511 0.910 -1.359

2 1 1.021 1.789 1.035 2.765 8 1 1.053 2.049 1.013 0.477
2 1.001 0.139 1.019 1.644 2 1.006 0.344 1.002 0.078
4 0.993 -1.312 1.039 2.821 4 1.016 0.991 0.925 -1.793
6 0.990 -3.169 1.019 0.871 6 0.990 -0.792 0.930 -1.309
9 0.986 -2.030 0.979 -0.826 9 1.004 0.263 0.838 -2.262
12 0.992 -0.470 0.942 -1.311 12 1.001 0.030 0.884 -1.636

4 1 1.013 0.856 1.043 2.642 10 1 1.075 1.934 1.018 0.731
2 1.003 0.154 1.051 2.939 2 0.997 -0.128 0.996 -0.127
4 0.995 -0.500 1.052 2.503 4 1.021 1.167 0.906 -1.905
6 0.986 -2.355 0.997 -0.120 6 0.983 -1.189 0.886 -2.004
9 0.989 -0.764 0.983 -0.375 9 1.020 0.988 0.814 -2.186
12 0.979 -0.972 0.887 -1.908 12 1.009 0.339 0.862 -1.972

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The critical values are from McCracken (2007) to avoid size distortion because the benchmark model

is nested by our factor model.
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Table 6. PLS-PCA-RW vs. RW: Foreign Exchange Market

ŷ
PLS/PCRW

t+j|t = yt + ϕ̂
′

j∆zt vs. ŷBMRW

t+j|t = yt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
2 1 0.938 -1.136 1.029 1.696 8 1 1.009 0.103 1.038 0.802

2 0.995 -0.086 1.013 0.415 2 1.076 0.750 1.080 1.688
4 1.057 0.846 1.045 1.466 4 1.226 1.727 1.154 2.993
6 1.145 1.104 1.050 1.214 6 1.327 2.222 1.180 3.005
9 1.171 2.460 1.027 0.655 9 1.363 3.871 1.146 2.566
12 1.359 2.049 1.047 0.965 12 1.493 1.999 1.135 2.056

4 1 0.962 -0.518 1.037 1.417 10 1 0.954 -0.508 1.064 2.185
2 1.016 0.216 1.029 0.709 2 1.050 0.461 1.061 1.410
4 1.086 0.966 1.102 2.752 4 1.217 1.937 1.129 2.640
6 1.222 1.609 1.154 2.995 6 1.285 1.860 1.137 2.506
9 1.330 4.297 1.133 2.907 9 1.340 3.518 1.167 2.959
12 1.536 2.336 1.095 1.643 12 1.443 1.893 1.144 2.185

6 1 0.959 -0.579 1.014 0.252 12 1 0.944 -0.586 1.033 0.847
2 1.025 0.330 1.067 1.599 2 1.045 0.411 1.028 0.419
4 1.101 1.005 1.124 3.425 4 1.165 1.377 1.078 0.809
6 1.277 2.008 1.209 2.751 6 1.163 0.910 1.092 1.485
9 1.324 3.590 1.132 2.450 9 1.331 3.149 1.160 2.825
12 1.590 2.271 1.109 2.097 12 1.576 2.037 1.131 2.755

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The critical values are from McCracken (2007) to avoid size distortion because the benchmark model

is nested by our factor model.
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Table 7. PLS-PC-RW vs. RW: Stock Market

ŷ
PLS/PCRW

t+j|t = yt + ϕ̂
′

j∆zt vs. ŷBMRW

t+j|t = yt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
2 1 1.001 0.167 1.006 0.645 8 1 1.047 1.226 1.121 2.881

2 0.996 -0.238 1.016 0.965 2 1.079 1.228 1.243 3.171
4 0.993 -0.402 1.018 1.001 4 1.121 1.960 1.289 2.829
6 1.014 0.757 0.999 -0.066 6 1.102 2.064 1.289 2.964
9 1.016 0.488 0.984 -0.545 9 1.108 1.242 1.270 2.340
12 1.006 0.254 0.970 -1.180 12 1.103 2.005 1.304 2.956

4 1 1.042 1.001 1.067 3.071 10 1 1.053 1.306 1.147 2.863
2 1.050 0.882 1.149 3.312 2 1.061 0.924 1.273 2.976
4 1.044 0.841 1.164 3.281 4 1.116 1.754 1.296 2.878
6 1.092 1.852 1.178 3.173 6 1.116 2.222 1.258 2.626
9 1.128 1.395 1.213 2.813 9 1.127 1.399 1.248 2.139
12 1.105 2.099 1.162 2.576 12 1.113 2.072 1.297 2.652

6 1 1.042 1.164 1.112 2.865 12 1 1.086 1.397 1.165 3.144
2 1.058 0.898 1.234 3.150 2 1.058 0.769 1.277 2.916
4 1.061 1.055 1.263 2.745 4 1.123 1.692 1.320 2.808
6 1.086 1.689 1.288 3.070 6 1.131 1.966 1.359 3.040
9 1.120 1.233 1.285 2.411 9 1.149 1.399 1.315 2.407
12 1.117 2.046 1.261 2.672 12 1.137 2.123 1.399 3.064

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The asymptotic critical values from the standard normal distribution are used.
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Table 8. PLS-PCA-AR vs. AR: Foreign Exchange Market

ŷ
PLS/PCAR

t+j|t = α̂jyt + ω̂
′

j∆zt vs. ŷBMAR

t+j|t = α̂jyt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
2 1 1.033 1.244 0.997 -0.268 8 1 1.030 0.752 0.939 -3.054

2 1.002 0.063 0.970 -1.838 2 0.998 -0.071 0.932 -2.881
4 0.999 -0.134 0.996 -0.784 4 1.020 0.434 0.949 -1.320
6 0.984 -0.367 0.993 -0.874 6 0.877 -2.386 0.931 -2.562
9 0.947 -2.168 1.020 0.711 9 0.899 -2.191 0.967 -1.092
12 0.951 -1.033 0.991 -1.046 12 0.944 -0.964 0.947 -1.880

4 1 1.033 0.977 0.973 -2.458 10 1 1.005 0.098 0.937 -3.363
2 0.997 -0.117 0.962 -2.206 2 0.998 -0.056 0.915 -3.006
4 0.988 -0.352 0.988 -1.091 4 0.978 -0.558 0.925 -2.026
6 0.954 -1.054 0.990 -0.882 6 0.853 -1.860 0.934 -2.107
9 0.926 -1.991 1.026 1.369 9 0.877 -1.757 0.952 -1.384
12 0.980 -0.516 0.983 -1.049 12 1.007 0.063 0.903 -2.821

6 1 1.027 0.712 0.966 -2.322 12 1 0.983 -0.299 0.928 -3.176
2 0.998 -0.061 0.944 -2.557 2 0.964 -0.806 0.894 -2.714
4 1.012 0.329 0.971 -1.856 4 0.970 -0.434 0.885 -1.253
6 0.922 -2.153 0.991 -0.549 6 0.806 -1.785 0.905 -2.078
9 0.913 -1.836 0.988 -0.659 9 0.865 -2.357 0.963 -1.101
12 0.963 -1.138 0.965 -1.314 12 0.988 -0.111 0.894 -2.771

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The critical values are from McCracken (2007) to avoid size distortion because the benchmark model

is nested by our factor model.
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Table 9. PLS-PCA-AR vs. AR: Stock Market

ŷ
PLS/PCAR

t+j|t = α̂jyt + ω̂
′

j∆zt vs. ŷBMAR

t+j|t = α̂jyt

Recursive Rolling Window Recursive Rolling Window
k h RRMSPE DMW RRMSPE DMW k h RRMSPE DMW RRMSPE DMW
2 1 1.021 1.510 1.039 2.691 8 1 1.044 1.733 1.020 0.768

2 1.001 0.135 1.022 1.897 2 1.011 0.609 1.002 0.100
4 0.990 -1.818 1.038 2.722 4 1.021 1.265 0.928 -1.829
6 0.993 -2.431 1.018 0.954 6 0.984 -1.202 0.922 -1.516
9 0.997 -0.349 0.973 -0.886 9 1.019 0.942 0.820 -2.984
12 0.999 -0.091 0.923 -1.604 12 1.018 0.633 0.874 -2.109

4 1 1.033 1.344 1.028 1.901 10 1 1.053 1.936 1.026 0.890
2 1.015 0.782 1.027 2.017 2 1.004 0.234 0.998 -0.049
4 0.999 -0.108 1.015 0.902 4 1.021 1.307 0.917 -1.880
6 1.002 0.242 1.002 0.090 6 0.990 -0.634 0.887 -1.763
9 1.011 0.649 0.957 -1.076 9 1.022 1.009 0.805 -2.280
12 0.991 -0.471 0.916 -1.696 12 1.027 0.914 0.848 -1.750

6 1 1.050 2.068 1.016 0.702 12 1 1.069 1.729 1.034 1.189
2 1.010 0.485 1.019 0.775 2 0.999 -0.062 0.993 -0.183
4 1.001 0.056 0.953 -1.359 4 1.020 1.069 0.906 -1.853
6 0.993 -0.784 0.918 -2.330 6 0.999 -0.081 0.887 -1.884
9 1.015 1.191 0.846 -2.666 9 1.047 1.846 0.809 -2.298
12 0.996 -0.191 0.869 -2.200 12 1.024 0.832 0.848 -1.903

Note: RRMSPE denotes the ratio of the root mean squared prediction errors, which is the mean squared prediction

error (RMSPE) from the benchmark model divided by the RMSPE from the competing Partial Least Squares

factor model. DMW is the Diebold-Mariano-West statistics. We repeat estimations and forecasting starting from

the first 50% observations until we (out-of-sample) forecast the last observation of the KFSTI. DMW statistics in

bold denote the rejection of the null hypothesis of equal predictability at the 5% significance level in favor of our

factor models. The critical values are from McCracken (2007) to avoid size distortion because the benchmark model

is nested by our factor model.
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Figure 1. Korean Financial Stress Index

29



Figure 2. Principal Component Analysis

Note: Estimated level factors via the method of the principal component are reported in the top panel. Graphs in

the bottom panel are factor loading coefficients estimates.
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Figure 3. Partial Least Squares Estimation: Foreign Exchange Market

Note: Estimated level factors via the partial least squares method are reported in the top panel. Graphs in the

bottom panel are weighting matrix estimates.
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Figure 4. Partial Least Squares Estimation: Stock Market

Note: Estimated level factors via the partial least squares method are reported in the top panel. Graphs in the

bottom panel are weighting matrix estimates.
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Figure 5. In-Sample Fit Analysis: R Squares

Note: We report R2 and cumulative R2 values in the top and lower panel, respectively.
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Figure 6. Cross-Comparisons: Foreign Exchange Market

Note: We report the RRMSPE defined as the RMSPE of the PC method divided the RMSPE of the PLS. That

is, the PLS method outperforms the PC method when RRMSPE is greater than one.
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Figure 7. Cross-Comparisons: Stock Market

Note: We report the RRMSPE defined as the RMSPE of the PC method divided the RMSPE of the PLS. That

is, the PLS method outperforms the PC method when RRMSPE is greater than one.
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Figure 8. Cross-Comparisons: PLS-RW vs. PLS-AR

Note: We report the RRMSPE defined as the RMSPE of the PLS-RW model divided the RMSPE of the PLS-AR

model. That is, the PLS-AR model outperforms the PLS-RW model when RRMSPE is greater than one.
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