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Abstract

We study the implications of patents in an overlapping generations model with horizontal

innovation of differentiated physical capital. We show that within this demographic structure of

finitely lived agents, weakening patent protection generates two contradicting effects on innova-

tion and growth. Weakening patent protection lowers the (average) price of patented machines,

thereby increasing machine utilization, output, aggregate saving, and investment. However, a

higher demand for machines shifts investment away from the R&D activity aimed at inventing

new machine varieties, toward the formation of physical capital. The growth maximizing level

of patent protection is incomplete and we show that shortening patent length is more effective

than loosening patent breadth in spurring growth. Shorter patent length has an additional pos-

itive effect on growth by decreasing investment in old patents. Finally, we show that the welfare

implications of shortening patent breadth depend on consumer time preference and the degree

of machine specialization.
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1 Introduction

There is a relatively large literature on the role of patent policy in modern growth theory and

the implications of patent strength to R&D-based growth and welfare. The current literature,

however, is almost exclusively written about models with infinitely lived agents. This paper utilizes

an overlapping generations model to highlight some unique implications of finite lifetimes to patent

policy.

In an economy of finitely lived agents, the limited longevity sets a barrier to growth by inducing

integenerational trade in productive assets. This point was emphasized by Jones and Manuelli

(1992) in a model of physical capital accumulation, and by Chou and Shy (1993) in an endogenous

growth model of variety expansion with no physical capital. Both studies employed the canonical

Overlapping Generations (OLG) model pioneered by Samuelson (1958) and Diamond (1965), where

saving and investment are constrained by labor income1.

Jones and Manuelli (1992) showed that perpetual growth cannot prevail in the neoclassical

OLG economy2 due to the limited ability of the young to purchase capital held by the old. One of

the remedies they consider to support sustained growth in such economy is direct income transfers

from old to young. Chou and Shy (1993) emphasized that inter-generational trade in old patent

slows down growth as investment in old patents crowds out innovative (R&D) investment in new

varieties. They showed that due to this crowding-out effect, which is not present in infinitely-lived

agent economy, shortening patent length enhances growth.

To the best of our knowledge, Sorek (2011) is the only other work to study the growth im-

plications of patents in the OLG framework. However, this work focuses on the effect of patents’

breadth and length on quality growth (i.e. vertical innovation), where differentiated consumption

goods are only produced with labor (i.e. there is no physical capital as in Chou and Shy 1993).

In Sorek’s (2011) setup, the effect of patent policy on growth depends crucially on the elasticity of

inter-temporal substitution, through the effect of the interest rate on life-cycle saving in the OLG

model. This effect plays no role in the current analysis (though it is considered in the Appendix).

The present work studies an OLG economy that incorporates both variety expansion and

physical capital accumulation, to highlight a unique mechanism through which loosening patents’

strength spurs growth. Our analysis places the variety-expansion model proposed by Rivera-Batiz

and Romer (1991)3, into the canonical OLG demographic framework of Samuelson (1958) and

Diomaond (1965). Previous works on Rivera-Batiz and Romer’s (1991) model economy with infi-

nitely lived agents concluded that growth is maximized with complete patent protection, that is,

infinite patent length and complete patent breadth; See Kwan and Lai (2003), Cysne and Turchick

1More generally, in economies with finitely lived agents the accumulation of assets is limited by the agent’s
consumption horizon (longevity).

2 In other words, the perpetual accumulation of physical capital per-capita.
3Barro and Sala-i-Martin (2004) and Aghion and Howitt (2008) adopted this framework as the textbook model of

variety expansion; See chapters 6 and 8, respectively.
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(2012), and Zeng et al. (2014).4,5

In order to isolate the main effect under study from the aforementioned crowding-out effect6, we

first show that under infinite patent length growth is maximized with incomplete patent breadth.

The mechanism at work behind this result involves the trade-off between the static and dynamic

effects faced by the patents policy maker. Weakening patent breadth protection works to lower the

price of patented machines (by weakening sellers’market power), which in turn increases demand for

machines. With more machines being utilized, output and labor income are higher, thus increasing

aggregate saving and investment. This is the positive static effect of loosening patent breadth

protection on growth.7 However, higher demand for machines shifts investment away from patents

and innovation toward physical capital. This is the negative dynamic effect of weakening patent

breadth protection on growth.

We show that the growth maximizing patent breadth depends negatively on the depreciation

rate of capital due to the effect of the latter on machines’price. The lower the depreciation rate,

the lower the price of physical capital and, therefore, the higher is the demand for physical capital.

With initial lower machine prices, there is less potential for growth enhancement through further

price decrease induced by loosening patent protection.

The effect of patent policy on growth we are highlighting here is not present in the counterpart

model of infinitely living agents, where saving is not bounded by labor income. With infinitely

lived agents, the growth rate is determined by the standard Euler condition8, and thus the effect

of patent protection strength on growth works solely through its positive impact on the returns to

innovation and, thereby, the interest rate.

Next, we show that, for any positive depreciation rate on physical capital, shortening patent

length is more effective in spurring growth than loosening patent breadth protection. Shortening

patent length triggers the mechanism presented above while mitigating the crowding out effect as

in Chou and Shy (1993).9 Shortening patent length induces the same effect as loosening patent

4These studies differ only in their modelling approach of patent policy. The first two model patent policy through
constant imitation rate, which can be also interpreted as stochastic patent duration, as will be explained in Section
4. The last study models patent policy along two (more natural) dimensions: deterministic patent duration and
price regulation which is, technically, equivalent to our modeling approach of patent breadth. All these works assume
the differentiated inputs are intermediate goods that are formed are formed in the same period they are being used,
whereas we consider the differentiated inputs as investment goods (i.e. physical capital) that are formed one period
ahead of utilization. Nonetheless, for the infinitely lived agents this assumption does not effect the implications of
patent breadth for growth.

5 In another related work, Iwaisako and Futagami (2013) study the implications of patent policy for growth in a
model of infinitely lived agents with physical capital. However, the role of physical capital is completely different than
in the present analysis. They use homogenous (raw) physical capital, along with labor, as an input in the production
of differentiated consumption goods - to which patent policy applies.

6The weakening of breadth protection over all patents evenly (as considered here), does not reduce the crowding-
out effect induced by intergenerational trade in old patents.

7Since the old are the patent owners, this effect of weakening patent breadth protection is similar to income
transfers from the old to the young considered by Jones and Manuelli (1992).Similarly, Uhlig and Yanagawa (1996)
showed that reliance on capital-income taxation can also enhance growth.

8The familiar Euler condition is given by
·
c
c
= 1

θ
(r − ρ), where c is per-capita consumption, θ is the inter-temporal

elasticity of substitution, ρ is the time preference parameter and r is the interest rate. See for example equations
(3),(14) and (15), in Zeng et al. (2014).

9This crowding-out reduction could be also achieved by weakening patent breadth protection gradually along
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breadth protection by lowering the average price of machine varieties. The expiration of patent over

a certain specialized machine results in competition among imitators of this specific variety, which

brings its price down to marginal cost. Shorter patent length increases the fraction of competitive

machine-industries, thus lowering average machines’price. Compared with Chou and Shy (1993)

and Sorek (2011), who found that one-period patent length yields higher growth then infinite

patents protection in OLG economy with no physical capital, we also find that one period patent

length never maximizes growth in our model economy.

Our welfare analysis shows that enhancing growth by loosening patent breadth protection is

preferred by all generations if time preference and the degree of substitution across machine vari-

eties are suffi ciently low. This result concurs with Chou and Shy’s (1993) analysis of the welfare

implications of patent length in their OLG model economy.10

Finally, in the last section of the analysis, we present an implication of our main finding for

patent policy and economic development. We show that when labor productivity increases relative

to innovation cost, due to human capital accumulation, the growth maximizing patent strength

corresponds to labor productivity. Hence, as the economy develops, the growth maximizing patent

strength is increasing as well. This result provides a normative case for the documented positive

correlation between the strength of intellectual property rights (IPR) and economic development

worldwide (See Eicher and Newiak 2013, and Chu et al. 2014).

Chu et al. (2014) presented the first analysis of stage-dependent optimal IPR, based on a trade-

off between imitation from foreign direct investment (FDI) and reliance on domestic innovation.

Our last result provides a complementary case for growth enhancing stage-dependent IPR policy

for a closed economy (which is independent of the imitation motive). In an earlier analysis of the

topic, Diwakar and Sorek (2016) provide evidence that major developing economies strongly restrict

(physical) capital inflows.

The paper proceeds in a straightforward manner. Section 2 presents the model. Section 3

studies the implications of alternative patent policies to growth and welfare. Lastly, Section 4

concludes.

2 Model

Our model uses the variety expansion model with lab-equipment innovation technology and differ-

entiated capital goods proposed by Rivera-Batiz and Romer (1991) together with Diamond’s (1965)

canonical OLG demographic structure. Each period two overlapping generations of measure L, the

"young" and the "old, are economically active. Each agent is endowed with one unit of labor to be

supplied inelastically when young. Old agents retire and consume their saving.

The benchmark model presented in this section assumes full patent protection - i.e. infinite

patent duration and complete patent breadth protection, implying that in any period innovators can

patents’lifetime. Either way the market value of an old patent will decrease, freeing investment resources for R&D
activity.
10See Propositions 3-4 on page 310 there.
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charge the unconstrained monopolistic price for their patented machines. We study the implications

of incomplete patent protection in Section 3.

2.1 Production and innovation

The final good Y is produced by perfectly competitive firms with labor and differentiated capital

goods, to which we refer also as "specialized machines".

Yt = AL1−αt

Mt∫
0

Kα
i,t di , (1)

where α ∈ (0, 1), A is a productivity factor, L is the constant labor supply,Ki,t is the utilization level

of machine-variety i in period t, respectively, and Mt measures the number of available machine-

varieties.11 Machines are subject to the depreciation rate δ ∈ (0, 1) per usage-period, and the
price of the final good is normalized to one. Under symmetric equilibrium, utilization level for all

machines is the same, i.e. Ki,t = Kt ∀ i , and thus total output is

Yt = AMtKt
αL1−α. (1a)

The representative (perfectly-competitive) firm in the final-good production sector employs spe-

cialized machines at the rental price pi and labor at the market wage w, in order to maximize the

profit function

πj,t = AL1−αt

Mt∫
0

Kα
i,t di−

Mt∫
i=1

pi,tKi,t di− wtLt .

The labor market is perfectly competitive and the equilibrium wage and aggregate labor income

are wt = Yt = (1− α)AMtKt
αL1−α and wtL = A(1 − α)MtKt

αL1−α, respectively. The profit

maximization with respect to each machine variety yields the familiar demand function: Kd
i,t =

A
1

1−αL
(

α
pi,t

) 1
1−α
. Assuming symmetric equilibrium prices and plugging the latter expression back

into (1a) we obtain

Yt = A
1

1−αMtL

(
α

pt

) α
1−α

. (2)

Innovation technology follows lab-equipment specification, and the cost of a new blue print is η

output units.

11The elasticity of substitution between different varieties is 1
α
.
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2.2 Preferences

Lifetime utility of the representative agent born in period t is derived from consumption (denoted

by c) over two periods, based on the logarithmic instantaneous-utility specification12

Ut = ln c1,t + ρ ln c2 ,t , (3)

where ρ ∈ (0, 1) is the subjective discount factor. Young agents allocate their labor income between
consumption and saving (denoted by s). The solution for the standard optimal saving problem is

st =
wt

1+ρ−1 . Hence, aggregate saving is St =
wtL
1+ρ−1 , which after substituting the explicit expressions

for wt becomes

St =
(1− α)A

1
1−αMtL

(
α
p

) α
1−α

1 + ρ−1
(4)

2.3 Equilibrium and growth

The patent owners of each machine variety borrow raw physical capital from savers/lenders at

the rate (δ + rt), where rt is the net interest. They then transform each unit of raw capital into

one specialized machine, at no cost, and the specialized machines are then rented to final output

producers at the price p. Hence, given the demand for each machine as previously specified, the

per-period surplus from each patented machine, denoted PS, is: PSi,t = [pi,t − (δ + rt)]Kd
i,t.

This surplus is maximized by the standard monopolistic price pi,t = δ+rt
α . Under infinite patent

duration, all new and old varieties are priced equally and, therefore, share the same utilization level.

As long as innovation takes place, the market value of old varieties equals the cost of inventing a

new one, η. The gross rate of return on investment in patents is given by 1 + rt =
PS+η
η . Notice

that the numerator in the interest expression contains η because each and every period all patents

held by old agents are sold to the young agents.

Plugging the explicit term for the surplus into the interest rate expression yields an implicit

expression for the equilibrium interest:

∀t : 1 + r =
[pi,t − (δ + rt)]Kd

i,t + η

η
=
(δ + r)−

α
1−α

(
1
α − 1

)
A

1
1−αLα

2
1−α + η

η
. (5)

Equation (5) also defines the no-arbitrage condition that equalizes the net rate of return on

investment in patents and investment in physical capital.

Lemma 1 There exists a unique stationary interest rate, r∗, which solves (5).

Proof. The left hand side of (2) is increasing linearly in r , from one (for r = 0) to infinity. The

12 It is well known that under the assumed demographic structure, the logarithmic instantaneous utility implies that
the saving (and investment) level is independent of the interest rate. In the Appendix, we consider the implications
of the general CEIS preference form.
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right hand side of (5) is decreasing in r from
(δ)
− α
1−α ( λα−1)A

1
1−αL

(
α2

λ

) 1
1−α

+η

η > 1 (for r = 0) to zero

(for r →∞). Hence, by the fixed point theorem, there exists a positive stationary interest rate r∗

that solves (5).

As the right hand side of (5) is decreasing with the depreciation rate, so does the equilibrium

interest rate, that is ∂r∗

∂δ < 0. For the case δ = 0, equation (5) yields an explicit solution for the

stationary equilibrium rate:

r =

[(
1

α
− 1
)
L

η

]1−α
Aα2, for δ = 0, ∀t.

Under the equilibrium interest rate, aggregate saving is allocated over investment in old and

young patents and in physical capital, where the investment in physical capital is set to meet the

demand for specialized machines.

It =Mt+1

[
η +A

1
1−αL

(
α2

r + δ

) 1
1−α
]

(6)

Equation (5) implies that machines prices are stationary: ∀t, i : pi,t = δ+r∗

α . Hence, Following (2),

the output growth rate, denoted gY,t+1 ≡ Yt+1
Yt
−1, which coincides with per-capita output growth13,

is equal to the rate of machine-varieties expansion, i.e. gY,t+1 ≡ Yt+1
Yt
− 1 = gM,t+1 ≡ Mt+1

Mt
− 1.

Imposing the equilibrium condition S = I, we equalize (4) and (6), to derive the stationary rate of

variety expansion which defines the output growth rate:

1 + gy =

1−α
1+ρ−1

(
α2

r+δ

) α
1−α

η̂ +
(
α2

r+δ

) 1
1−α

(7)

where η̂ = η

A
1

1−αL
. It can be shown that suffi ciently low η̂ guarantees a positive growth rate, and

we will generally assume that this the case.

3 Patents

We now explore the implications of patent policy to growth and welfare. The growth implications

of patent breadth protection under infinite patent length are studied first. We then demonstrate

the greater effectiveness of finite patent length in spurring economic growth. Lastly, we examine

welfare and the issue of stage-dependent patent policy.

3.1 Patent breadth and growth

We model patent breadth protection with the parameter λ, which limits the ability of patent holders

to charge the unconstrained monopolistic price: p (λ) = λp∗ = λ(δ+rt)
α where λ ∈ (α, 1), and thus

13As both total population and the labor force are constant.
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p (λ) ∈
(
1, 1α

)
. One can think of p (λ) as the maximal price a patent holder can set and still

deter competition by imitators. Weaker breadth protection lowers the cost of imitation, thereby

imposing a lower deterrence price on patent holders.14 When λ = 1, patent breadth protection

is complete and patent holders can charge the unconstrained monopolistic price p = δ+rt
α . With

zero protection λ = α, patent holders lose their market power completely and sell at marginal cost.

Note that as patent breadth protection is weakened, machines’price is reduced and demand for

each machine-variety is increasing. Under this patent breadth policy, the equilibrium interest rate

in equation (5) modifies to

∀t : 1 + r =
(δ + r)−

α
1−α

(
λ
α − 1

)
A

1
1−αL

(
α2

λ

) 1
1−α

+ η

η
. (8)

For δ = 0, ∀t : r =
[(

λ

α
− 1
)
L

η

]1−α
A

(
α2

λ

)
. (8a)

Lemma 2 The stationary equilibrium interest rate r∗ is increasing with patent breadth protection,

i.e. ∂r∗

∂λ > 0

Proof. Differentiating the right hand side for λ yields a positive derivative for any λ < 1 . Hence,
the value of r∗, which solves (8), is increasing with patent breadth protection λ.

Lemma 1 implies that loosening patent breadth protection decreases machines’price, p (λ) =
λ(δ+r∗)

α , through capping the monopolistic markup and by decreasing the marginal cost (of capital)

on which this mark up builds. Thus, loosening patent breadth protection increases the demand for

each machine variety. This increase in demand for machines has positive effect on aggregate saving

(4), for a given variety span:

St =
(1− α)A

1
1−αMtL

(
α
p(λ)

) α
1−α

1 + ρ−1
.

This is the positive static effect of loosening patent breadth protection on aggregate saving (for a

given variety span Mt) and, thereby, innovation and growth. However, for a given level of saving,

the increased demand for machines works to shift investment toward physical capital and away from

patents. This is the dynamic negative effect of loosening patent breadth protection on innovation

and growth. From equation (6) we have:

It =Mt+1

[
η +A

1
1−αL

(
α

p (λ)

) 1
1−α
]
.

Plugging p (λ) = λ(δ+r∗)
α in the above saving and investment expressions and imposing the aggregate

constraint S = I , we obtain

14Similar modeling approach for patent breadth protection was used (among others) by Goh and Olivier (2002),
Iwaisako and Futagami (2013), and Chu et al. (2016).
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1 + gy =
1− α
1 + ρ−1

ψ
α

1−α

η̂ + ψ
1

1−α
. (9)

Where η̂ = η

A
1

1−αL
(as before), and ψ ≡ α2

λ(δ+r∗) . Finally, we denote the growth maximizing policy

λ∗∗.

Proposition 1 For any positive depreciation rate, the growth-maximizing patent breadth is positive
but incomplete, and is decreasing with depreciation rate and with . That is ∀δ > 0 : α < λ∗∗ < 1

and ∂λ∗∗

∂δ < 0.

Proof. Differentiating (9) for ψ reveals that the growth rate is increasing with ψ, if α
1−α η̂ > ψ

1
1−α ,

that is α
1−α η̂ >

[
α2

λ(δ+r∗)

] 1
1−α
. Hence, under this condition the growth rate is decreasing in λ.

Plugging the interest rate in (8a), i.e. for δ = 0, in the latter condition yields equality for λ = 1,

implying that this condition holds any δ > 0 (evaluated at λ = 1). Hence, λ∗∗ < 1. For λ = α

equation (8) yields r∗ = 0 , ∀δ. Then, setting r∗ = 0 in (9) yields negative growth rate, gy < 0,

∀δ. Hence, α < λ∗∗ < 1. Because the interest rate is increasing with δ, the degree of patent

breadth protection that maximizes growth, to satisfy
[

α2

λ∗∗(δ+r∗∗)

] 1
1−α

= α
1−α η̂, is decreasing with

the depreciation rate, i.e. ∂λ∗∗

∂δ < 0.

Proposition 2 The maximal growth rate that can be achieved with incomplete patent breadth pro-
tection is unique: 1 + g∗∗y = αα(1−α)2−α

(1+ρ−1)η̂1−α

Proof. By setting ψ = ψ
∗∗ ≡

(
α
1−α η̂

)1−α
in the growth equation (9).

3.2 Patent length and growth

We turn to study the implications of patent length for growth, under complete patent breadth

protection. We study stochastic patent length, assuming that each period a fraction 1 − π of the
existing patents expire, where π ∈ (0, 1) .1516 However, all new patents are certain to grant patent
for one period (which will expire with probability 1−π in the second period). This means that the
actual lifetime of a patent, denoted T , is the value of E(T ) = 1+ π

1−π for all new and old patented

technologies. Under this specification, the stationary fraction of patented industries, µ, is

µ =
π + g

1 + g
⇒ 1− µ = 1− π

1 + g
. (10)

Applying (12) to (1) we write the modified output equation:

15This formulation has two practical advantages. First, it is a continuous policy instrument although time in this
model is discrete. Second, it greatly enhances tractability.
16This modelling approach follows Helpman (), Kwan and Lai (2003), and Rubens and Turchick (2012). Their

original interpretation was that a fraction π of the patented technologies are being imitated due to a lack of patent-
protection enforcement.
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Yt = A
1

1−αMtL

[
π + g

1 + g

(
α2

δ + rt

) α
1−α

+
1− π
1 + g

(
α

δ + rt

) α
1−α
]
. (11)

Aggregate saving is still a constant fraction of total output: St =
(1−α)
1+ρ−1Yt, and the modified

investment equation is

It =Mt+1

[
π + g

1 + g
η +

π + g

1 + g
A

1
1−αL

(
α2

δ + rt+1

) 1
1−α

+
1− π
1 + g

A
1

1−αL

(
α

δ + rt+1

) 1
1−α
]
. (12)

Imposing It = St yields the following implicit equation for the stationary-growth rate:

1 + g =

(1−α)
1+ρ−1

[(
α2

δ+rt

) α
1−α

+ 1−π
π+g

(
α

δ+rt

) α
1−α
]

η̂ +
(

α2

δ+rt

) 1
1−α

+ 1−π
π+g

(
α

δ+rt

) 1
1−α

=

(1−α)
1+ρ−1ψ

α
1−α
t

(
1 + 1−π

π+gα
−α
1−α
)

η̂ + ψ
1

1−α
t+1

(
1 + 1−π

π+gα
−1
1−α
) . (13)

Where ψt ≡ α2

λ(δ+rt)
, as before. This equation has only one positive root, and for π = 1 it coincides

with (7). The interest rate under the current patent policy is given by

∀t : 1 + r =
(δ + r)−

α
1−α

(
λ
α − 1

) (
α2

λ

) 1
1−α

+ πη̂

η̂
. (14)

The stationary equilibrium interest rate that satisfies (14), r∗, is increasing with the stochastic

patent length π, and for π = 1 it coincides with (5).

Remark 1 Setting π = (1− δ) in (14) yields δ + r∗ =
(
1−α
αη̂

)1−α
α2. Thus, by Proposition 2 we

have: ψ (π = 1− δ, λ = 1) = ψ
∗∗
(π = 1, λ∗∗) ≡

(
α
1−α η̂

)1−α
.

Applying the implicit function theorem to (13) we obtain the following expression for ∂g
∂π :

− (1−α)ψ
α

1−α

1+ρ−1

α| ∂ψ∂π |(1+ 1−π
π+g

α
−α
1−α

)
(1−α)ψ + (1+g)α

−α
1−α

(π+g)2

B + ψ 1
1−α

 | ∂ψ∂π |(1+ 1−π
π+g

α
−1
1−α

)
(1−α)ψ + (1+g)α

−1
1−α

(π+g)2

A
(1−α)ψ

α
1−α (1−π)α

−α
1−α

(1+ρ−1)(π+g)2
B − ψ

1
1−α (1−π)α

−1
1−α

(π+g)2
A+

[
η̂ + ψ

1
1−α

(
1 + 1−π

π+gα
−1
1−α
)]2

(15)

Where A and B are the numerator and denominator in the right hand side of (13), respectively.

Based on the above remark and equation (15), we obtain the following proposition.

Proposition 3 For any positive depreciation rate, finite patent length can yield a higher growth
than incomplete patent breadth protection.
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Proof. Substituting the ψ = ψ∗∗ =
(
η̂α
1−α

)1−α
into (13) yields the growth rate obtained in

Proposition 2. However, substituting ψ =
(
η̂α
1−α

)1−α
into (15) shows that both the numerator

and denominator are positive for any positive depreciation rate, that ∀δ > 0 : ∂g
∂π |π=1−δ > 0.

For zero depreciation rate the numerator is zero and the denominator is still positive That is, for

δ = 0 : ∂g∂π |π=1−δ = 0 . Hence, for any positive depreciation rate, growth under finite patent length
can be enhanced beyond the maximal rate defined in Proposition 2, by increasing expected patent

length beyond 1+ 1−δ
δ . That is π

∗∗ > 1− δ.

3.3 Patents and Welfare

This section will briefly explore the welfare implications of loosening patent protection. To maintain

tractability we focus on patent breadth protection. We follow Chou and Shy (1993) in comparing

the lifetime utility of all living generations under alternative stationary patent policies. Substituting

the explicit expressions for c1 and c2, implied by the saving equations in Subsection 2.2, into the

lifetime utility function (3) yields the indirect lifetime utility of the representative consumer who

was born in period t:

Ut = ln

(1− α)MtA
1

1−α
(
α
p

) α
1−α

1 + ρ

+ ρ ln
ρ(1− α)MtA

1
1−α

(
α
p

) α
1−α

1 + ρ
(1 + r∗)

 . (16)

Equation (16) implies that Ut = Ut−1 + (1 + ρ) ln(1 + g), and thus

Ut = U0 + t(1 + ρ) ln(1 + g). (16a)

where U0 is given by evaluating (16) for M0. By Propositions 1, for any positive depreciation

rate, the stationary growth rate g is maximized with incomplete breadth protection. Hence, by

(16), a suffi cient condition for incomplete breadth protection to increase the lifetime utility of all

generations who are born in the present and future periods, is having ∂U0
∂λ λ=1

< 0. The sign of the

derivatives ∂U0
∂λ depends on the sign of the following expression:[

ρ

1 + r
− α

1− α
(1 + ρ)

(δ + r∗)

]
∂r

∂λ
− α

1− α
(1 + ρ)

λ
.

However, Lemma 1 implies ∂r∗

∂λ > 0. Hence, having a negative term in the brackets of (16a) is

suffi cient condition to assure ∂U0
∂λ < 0. This suffi cient condition holds if ρ

1+ρ <
α
1−α .

17 This result is

summarized in our last proposition.

Proposition 4 Higher growth under incomplete patent breadth protection benefits all generations
if time preference and the degree of substitution across varieties are suffi ciently low, such that
ρ
1+ρ <

α
1−α ⇔

1
α <

1
ρ + 2.

17Recall that the elasticity of substitution across variety is 1
α
.
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Proposition 4, which relies on comparison between two alternative stationary policies concurs

with the results obtained in the welfare analysis of Chou and Shy (1993). However, the direct

transitional impact of loosening patent breadth policy at a certain period will not yield Pareto

improvement even if the above proposition holds. At period zero, the amount of available machines

is already pre-determined, and thus, decreasing their price can not increase their utilization level.

Hence, the positive effect on aggregate saving will not prevail, and only the negative effect

on second-period consumption (due to lower interest rate) will be at work. Therefore, in this case

transfers from the next young generation (to be born in period one) to the current young generation

will be required to maintain Pareto improvement. However, the complete analysis of this issue falls

beyond the scope of the current study.

3.4 Stage-dependent patent policy

Proposition 2 implies that the growth maximizing patent policy depends on the value of η̂ ≡ η

A
1

1−αL
.

This term can be interpreted as innovation-cost per effective labor supply, denoted H ≡ A
1

1−αL.18

However, the value of these parameters may be associated with the economy’s development stage.

Labor productivity is typically increasing along the course of economic development through the

accumulation of human capital. Similarly, the literature on R&D driven growth has considered

alternative endogenous dynamics of the innovation cost due to inter-temporal knowledge spillover.

This works to decrease per-variety invention cost and the stepping on toes ("fishing out") effect

(which works to increase invention cost as R&D efforts increase), and distance from the frontier.19

Proposition 2 suggests that the growth-maximizing patent protection is decreasing with η̂. In

this subsection, we attempt to formalize this result. Adding the time subscript to the relevant

parameters, we re-write the output and growth equations

Yt =MtHt

[
α

pt (λt)

] α
1−α

(17)

1 + gM,t+1 =
(1− α)
1 + ρ−1

Ht

[
α

pt(λt)

] α
1−α

η +Ht+1

[
α

pt+1(λt+1)

] 1
1−α

(17a)

where pt (λt) =
λt(δ+rt)

α , as before, and the interest rate follows the modified no-arbitrage condition

1 + r∗t+1 =
(δ + r∗t+1)

−α
1−α

(
λt+1
α − 1

)
λ
−1
1−α
t+1 α

2
1−α + η̂t+1

η̂t+1
(17b)

Equation (17) implies the following growth rate of per-capita output

18 If A
1

1−α is interpreted as labor augmented productivity factor we can write (1) as : Y =MKα
(
A

1
1−αL

)1−α
.

19See Jones (1995) and Segerstrom (1998), for example. Jones (1999) provides a compact summary of the topic.
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1 + gy,t+1 = (1 + gM,t+1) (1 + gH,t+1)(1 + gp(λ),t+1)
−α
1−α (18)

Combining equations (18) with (17a) yields

1 + gy,t+1 =
(1− α)
1 + ρ−1

ψ
α

1−α
t+1

η̂t+1 + ψ
1

1−α
t+1

(18a)

Notice that the growth equation (18a) depends only on the patent policy expected to prevail in

period t+ 1.

Proposition 5 The growth maximizing policy, ψ
∗∗
t ≡

(
α
1−α η̂t

)1−α
, implies that patent breadth is

decreasing with η̂t+1.

Proof. Proposition 1 implies that this growth rate is maximized with ψ
∗∗
t+1 ≡

(
α
1−α η̂t+1

)1−α
.

Rewriting the interest rate expression (17b) we obtain:
(

r∗t+1
δ+r∗t+1

α
λt+1−α η̂t+1

)1−α
=

α2

λt+1
(
δ + r∗t+1

)︸ ︷︷ ︸
=ψt+1

.

Hence, the growth maximizing condition is satisfied with
r∗t+1
δ+r∗t+1

= λt+1−α
1−α . Clearly, for δ = 0 growth

is maximized by the stationary policy of complete breadth protection. However, for any δ > 0, as

η̂t+1 is decreasing (increasing), the left hand side of the latter condition is also increasing. Then, in

order to restore the equality patent breadth protection should also increase (decrease). Then, by

strengthening patent breadth protection, the right hand side is increasing while the left hand side

is increasing at a lower rate.

4 Conclusion

This work proposes a contribution to the literature on patent policy and economic growth by

exploring the implications of patent policy in an OLG framework with physical capital. We have

highlighted a novel mechanism through which weakening patent protection can enhance growth,

which is unique to the OLG demographic structure of finitely lived agents. This mechanism involves

a trade-off between the effect of patent strength on aggregate saving and investment and the

allocation of total investment between patent ownership and physical capital. This positive effect

can be induced by either shortening patent length or loosening patent breadth protection. However,

shortening patent length also mitigates the crowding out effect of trade in old patents on R&D

investment. Hence, shortening patent length can be more effective at generating growth than

loosening patent breadth protection. These effects are not present in similar models with infinitely

lived agents. Consequently, growth in these models is maximized with eternal patent life and

complete patent breadth protection.

Finally, we have also presented an important implication of the main mechanism under study

to patent policy and economic development. A stage-dependent patent policy for which patent

13



strength is increasing over the course of economic development may be growth maximizing. This

result provides a normative case for the often observed positive correlation between patent strength

and economic development around the world.
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Appendix: CEIS utility

We turn here to consider the implication of the general CEIS instantaneous utility to our

previous result, considering the following lifetime utility form:

U =
c1−θt

1− θ + ρ
c1−θt+1

1− θ (A.1)

where 1θ is the elasticity of inter-temporal substitution, and for θ = 1 (26) falls back to the logarith-

mic form (3). The modified solution for the standard optimal saving problem is st = wt

1+ρ−
1
θ (1+r)

θ−1
θ

.

Hence, aggregate saving now is St = wtL

1+ρ−
1
θ (1+r)

θ−1
θ

.Substituting the explicit expressions for wt

into St and equalizing to aggregate investment given in (18) yields the growth equation

1 + gy =
1− α

1 + 1
ρ (1 + r)

1− 1
θ

(
α2

λ(δ+r)

) α
1−α

η̂ +
(

α2

λ(δ+r)

) 1
1−α

(A.2)

As it is well known, in the standard OLG framework the effect of interest rate on saving depends

on the inter-temporal elasticity of substitution: it is positive (negative) if θ < 1 (θ > 1). Hence,

because the interest rate is increasing with patent protection, the positive impact of decreasing

patent breadth on growth is diminishing with the inter-temporal elasticity of substitution. More

specifically, for θ < 1 all our results remain (and will hold for a larger set of parameters) as a

decrease in the interest rate by itself stimulates saving and investment (this is an additional effect

was not induced under the logarithmic utility form). However, as θ increases beyond one, the

decrease in the interest rate due to loosening patent breadth protection will work to hinder growth,

countering the positive effects that were defined in Proposition 1. For suffi ciently high value of

θ this direct interest effect may dominate the over all impact of loosening patent protection on

innovation and growth. Nevertheless, the empirical literature commonly suggests that θ is lower

than one, and thus supporting the relevance of our main findings20. The welfare analysis for θ 6= 1
turns out being intractable.

20See for example Hall (1988), Beaudry and Wincoop (1996), Ogaki and Reinhart (1998), Engelhardt and Kumar
(2009).
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