
 

Auburn University

Department of Economics 

Working Paper Series 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

London Calling: Nonlinear Mean Reversion 

across National Stock Markets 

Hyeongwoo Kim† and Jintae Kim‡

†Auburn University; ‡Georgia Southern University 

AUWP 2017‐05 

This paper can be downloaded without charge from: 

http://cla.auburn.edu/econwp/ 

http://econpapers.repec.org/paper/abnwpaper/ 



London Calling: Nonlinear Mean Reversion across

National Stock Markets∗

Hyeongwoo Kim† and Jintae Kim‡

May 2017

Abstract

This paper revisits empirical evidence of mean reversion of relative stock prices in

international stock markets. We implement a strand of univariate and panel unit root

tests for linear and nonlinear models of 18 national stock indices during the period

1969 to 2012. Our major findings are as follows. First, we find little evidence of linear

mean reversion irrespective of the choice of a reference country. Employing panel tests

yields the same conclusion once the cross-section dependence is controlled. Second, we

find strong evidence of nonlinear mean reversion when the UK serves as a reference

country, calling attention to the stock index in the UK. Choosing the US as a reference

yields very weak evidence of nonlinear stationarity. Third, via extensive Monte Carlo

simulations, we demonstrate a potential pitfall in using panel unit root tests with

cross-section dependence when a stationary common factor dominates nonstationary

idiosyncratic components in small samples.
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1 Introduction

It is an interesting question in international finance whether asset arbitrage in international

stock markets implies that deviations between stock indices are short-lived. If so, one can di-

versify international portfolios by short-selling well performing assets and purchasing poorly

performing assets to obtain excess returns as shown by Balvers et al. (2000). Such a strat-

egy is called the contrarian investment strategy, and it may imply that stocks become less

risky in the long run and are attractive for long-term investors (Spierdijk et al. (2012)). On

the contrary, if deviations are permanent, one should short worse performing assets while

buying better performing ones, because winner-loser reversals are not likely to happen. This

is called the momentum strategy.

Since the end of the 1980s, a lot of research work has examined mean reversion in in-

ternational stock markets. Fama and French (1988) and Poterba and Summers (1988) were

the first to provide the evidence in favor of mean reversion. Fama and French state that

25-40% of the variation in 3-5 year stock returns can be attributed to negative serial cor-

relation. Poterba and Summers (1988) found that a substantial part of the variance of the

US stock returns is due to a transitory component. However, Richardson and Smith (1991)

showed that if the small-sample bias is controlled, there is be no evidence for long-term mean

reversion. Kim et al. (1991) report very weak evidence of mean reversion in the post-war

era. Jegadeesh (1991) shows that mean reversion in stock prices is entirely concentrated in

January.

An array of researchers investigated possible cointegration properties of the stock indices

and their fundamental variables. For example, Campbell and Shiller (2001) examine the

mean-reverting behavior of the dividend yield and price-earnings ratio over time. If stock

prices are high in comparison to company fundamentals, it is expected that adjustment

toward an equilibrium will be made. They find that stock prices contribute most to adjusting

the ratios towards an equilibrium level.

Balvers et al. (2000) considered relative stock price indices of eighteen OECD countries

compared to a world index to get around the difficult task of specifying a fundamental

or trend path. Under the assumption that the difference between the trend path of one

country’s stock price index and that of a reference index is stationary, and that the speeds

of mean reversion in different countries are similar, they found substantial evidence of mean

reversion of relative stock price indices with a half-life of approximately 3.5 years. Similar

evidence has been reported by Chaudhuri and Wu (2004) for 17 emerging equity markets.

The assumption of a constant speed of mean reversion may be too restrictive, however,

since the speed of mean reversion may depend on the economic and political environment, and
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also it may change over time. For example, Kim et al. (1991) conclude that mean reversion

is a pre-World War II phenomenon only. Poterba and Summers (1988) find that the Great

Depression had a significant influence on the speed of mean reversion. Additionally, their

panel unit root test may have a serious size distortion problem in the presence of cross-section

dependence (Phillips and Sul (2003)). Controlling for cross-section dependence, Kim (2009)

reports much weaker evidence of mean reversion of relative stock prices across international

stock markets.

In recent work, Spierdijk et al. (2012) employed a wild bootstrap method to get the

median unbiased estimation and a rolling window approach to a long horizon data (1900-

2009) for their analysis. They find that stock prices revert more rapidly to their fundamental

value in periods of high economic uncertainty, caused by major economic and political events

such as Great Depression and the start of World War II. They report a statistically significant

mean reversion for most of their sub-sample periods, but their panel test results don’t seem

to match their univariate test results very well.1 Also in their panel model, they assumed

that the speed of mean reversion is constant as in Balvers et al. (2000) which contradicts

Wälti (2011) studied the relationship between stock market co-movements and mone-

tary integration. He reports that greater trade linkages and stronger financial integration

contribute to greater stock market co-movements.2

In the present paper, we revisit the findings by Balvers et al. (2000). We re-examine the

mean reversion of the relative stock price in international stock markets by using nonlinear

unit root tests in addition to linear tests. Nonlinear models have been widely used in the

study of financial data to account for state-dependent stochastic behavior due to market

frictions such as transaction costs; examples include, for exchange rates and law of one price,

Obstfeld and Taylor (1997), Taylor et al. (2001), Lo and Zivot (2001), Sarno et al. (2004)

and Lee and Chou (2013), and for stock prices or returns, Bali et al. (2008), Zhu and Zhu

(2013) and Kim and Ryu (2015). Nonlinear models are also used for the study of commodity

prices (for example, Balagtas and Holt (2009), Holt and Craig (2006), and Goodwin et al.

(2011)) to address nonlinear adjustments towards the equilibrium due to costly transactions,

government interventions, or different expectations by individuals (Arize (2011)).

Using a nonlinear unit root test (ESTAR), we find strong evidence of nonlinear mean

reversion of relative stock prices when the UK serves as the reference country. We find

1For example, with the US benchmark, only France shows mean reversion with the univariate test but
there is a solid stationarity with the panel test.

2Also the author concludes that lower exchange rate volatility and joint EMU membership are associ-
ated with stronger stock market comovements. The joint significance of these two variables indicates that
monetary integration raises return correlations by reducing transaction costs coming from exchange rate
uncertainty, and through the common monetary policy and the convergence of inflation expectations leading
to more homogeneous valuations.
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very little evidence of linear mean reversion irrespective of the choice of the reference index.

In addition, we employ a series of panel unit roots tests: the linear panel unit root test

(Pesaran (2007)) and a newly developed nonlinear panel (PESTAR) unit root test (Cerrato

et al. (2011)). These tests allow different mean reversion rates across countries and also

allow for cross sectional dependence. Thus, our approach is less restrictive than Balvers

et al. (2000) and should give more statistically reliable results.

We find no evidence of mean reversion from these panel unit root tests, a result which

seems to be inconsistent with the univariate ESTAR test results with the UK as the ref-

erence index that provide strong evidence of mean reversion. To look into this seemingly

conflicting statistical result, we conducted a principal component analysis via the PANIC

method developed by Bai and Ng (2004). We note empirical evidence of stationarity of the

estimated first common factor or cross-section means that served as proxy variables for the

common factor in Pesaran (2007) and Cerrato et al. (2011) with the UK reference. When the

stationary first common factor dominates idiosyncratic components that are quite persistent

or even nonstationary, the panel unit root tests that filter out the stationary common factor

may yield evidence against stationarity in the short-run, while the univariate test rejects the

null of nonstationarity. Via Monte Carlo simulations, we confirm this conjecture.

In sum, our findings imply that the contrarian investment would be useful when na-

tional equity prices deviate sufficient from the UK stock index, while one may employ the

momentum strategy with the US as a reference.

The rest of the paper is organized as follows. Section 2 constructs our baseline model of

the relative stock indices. Sections 3 and 4 report univariate and panel unit root test results,

respectively. Section 5 discusses our results using a dynamic factor analysis framework.

Section 6 establishes and provides simulation results. Section 7 concludes.

2 The Baseline Model

We use a model of a stochastic process for national stock indices, employed in Kim (2009),

that is a revised model of Balvers et al. (2000).

Let pi,t be the the national stock index and fi,t be its fundamental value in country i, all

expressed in natural logarithms. We assume that pi,t and fi,t obey nonstationary stochastic

processes. If pi,t and fi,t share a unique nonstationary component, deviations of pi,t from fi,t

must die out eventually. That is, pi,t and fi,t are cointegrated with a known cointegrating

vector [1 − 1]. Such a stochastic process can be modeled by the following error correction

model,

∆(pi,t+1 − fi,t+1) = ai − λi(pi,t − fi,t) + εi,t+1, (1)
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where 0 < λi < 1 represents the speed of convergence and εi,t is a mean-zero stochastic

process from an unknown distribution. The fundamental value fi,t is not directly observable,

but is assumed to obey the following stochastic process,

fi,t = ci + pw,t + υi,t, (2)

where ci is a country-specific constant, pw,t denotes a reference stock index price, and υi,t is

a zero-mean, possibly serially correlated stationary process from an unknown distribution.

Combining Eqs. (1) and (2) and after controlling for serial correlation, we obtain the

following augmented Dickey-Fuller equation for the relative stock price, ri,t = pi,t − pw,t, for

country i,

ri,t = αi + ρiri,t−1 +
k∑

j=1

βi,j∆ri,t−j + ηi,t.
3 (3)

That is, ri,t measures deviations of the stock index in country i from a reference index at

time t. Note that ρi ∈ (0, 1) is the persistence parameter of the stock index deviation for

country i.

It is easy to see that Eq. (3) is equivalent to Eq. (4) in Balvers et al. (2000). It

should be noted, however, that Eq. (3) does not require the homogeneity assumption for the

convergence rate λ.4 Furthermore, we do not need to impose any distributional assumptions

on ηt.
5

3 Univariate Unit Root Tests

3.1 Data

Following Balvers et al. (2000), we use a panel of yearly observations of the Morgan Stanley

Capital International (MSCI) stock price indices for 18 Developed Market group countries

during the period 1969 to 2012 to test for mean reversion. The observations are end-of-period

(December) value-weighted gross index prices in US dollar terms that include dividends.

Table 1 provides summary statistics for the deviations of the logarithm of the relative stock

indices of 17 countries to the two reference countries, US and UK respectively.

The mean values of the index deviations relative to the US index range from -0.981 for

3Refer to Kim (2009) for derivation of the equation.
4In order to derive Eq.(4) in Balvers et al. (2000) from their Eq.(1), one has to assume λi = λw where

w refers to the reference country. Otherwise, the unobserved term P ∗it+1 in their Eq.(1) cannot be cancelled
out and remains in their estimation equation.

5Balvers et al. (2000) use Andrews (1993)’s methodology to calculate the median unbiased estimates and
the corresponding confidence intervals, which requires Gaussian error terms.
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Italy to 1.583 for Hong Kong, and the standard deviations vary from 0.235 for UK to 0.709

for Japan. The mean values of the stock index deviations relative to the UK index range

from -1.252 for Italy to 1.312 for Hong Kong, and the standard deviations vary from 0.235

for US to 0.639 for Japan. We also checked the normality of the data using the Jarque-Bera

test. The test rejects the null hypothesis of normality at the 5% significance level for 3 and

6 countries with the US index and with the UK index, respectively.6

Table 1 around here

In the following two subsections for univariate tests we will drop country specific index i

in the formulas for notational simplicity.

3.2 Linear Unit-Root Test Analysis

We first implement univariate linear unit root tests employing the following conventional

augmented Dickey-Fuller (ADF) test,

rt = α + ψt+ ρrt−1 +
k∑

j=1

βj∆rt−j + ηt, (4)

where ψ = 0 for the ADF test with an intercept only. We implemented the test for the

deviations of the logarithms of national stock price indices relative to that of the reference

country (US or UK). Results are reported in Table 2.

When the US index serves as the reference, the test rejects the null of nonstationarity for

6 out of 17 countries at the 10% significance level when an intercept is included (Belgium,

France, Germany, Hong Kong, Norway, and the UK). Allowing for trend stationarity, the

test rejects for one additional country (Sweden) at the 5% level. When the UK index is

used as the reference, the test rejects the null for 6 out of 17 countries when an intercept

is included. Allowing the time trend, the test rejects for 3 additional countries (Italy, the

Netherlands, and Sweden).

A rejection of the null hypothesis of nonstationarity implies that the national stock index

tends to synchronize with that of the reference country, because deviations of the stock

price from the reference index are not permanent. That is, short-selling a better-performing

stock index and buying the other would generate financial gains on average. Put differently,

6The Jarque-Bera test tends to reject the null hypothesis more often for higher frequency financial data.
The test unanimously rejects the null of normality when we use the monthly frequency data. All results are
available from authors upon requests.
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stationarity of rt suggests that a contrarian strategy would perform well for the pair of the

national stock index and the reference index.

Confining our attention only to such linear piecewise convergence, our findings imply

limited evidence in favor of the contrarian strategy, even though we observe a little stronger

evidence using the contrarian strategy when the UK index serves as the reference.

Table 2 around here

3.3 Nonlinear Unit-Root Test Analysis

It is known that the linear ADF test has low power when the true data generating process

(DGP) is nonlinear. One way to get around this difficulty is to use a nonlinear unit-root

test. For this purpose, we revise the linear model (4) to a nonlinear model by allowing

transitions of the stock price deviation rt between the stationary and the nonstationary

regime. Stock prices may adjust to long-run equilibrium only when the deviation is big

enough in the presence of a fixed transaction cost. Then, rt may follow a unit root process

locally around the long-run equilibrium value. We employ a variation of such stochastic

processes that allows gradual transitions between the regimes. Specifically, we assume the

following exponential smooth transition autoregressive process for rt,

rt = rt−1 + ξrt−1{1− exp(−θr2t−d)}+ εt, (5)

where θ is a strictly positive scale parameter so that 0 < exp(−θr2t−d) < 1, ξ a geomet-

ric ergodicity, and d is a delay parameter. Note that when rt−d is very big, that is, when

national stock price indices substantially deviate from the reference index, exp(−θr2t−d) be-

comes smaller, converging to 0, which implies that the stochastic process (5) becomes a

stationary AR(1) process (1 + ξ = ρ < 1). On the other hand, if rt−d is close to zero, then

rt becomes a unit root process. Alternatively, Eq. (5) can be rewritten as

∆rt = ξrt−1{1− exp(−θr2t−d)}+ εt. (6)

Note that ξ is not identified under the unit root null hypothesis, which results in the so-

called “Davies Problem.” To deal with it, Kapetanios et al. (2003) transformed it using the

first-order Taylor approximation as follows (assuming d = 1):

∆rt = δr3t−1 + εt. (7)
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They show that, under the unit root null, the least squares t-statistic for δ has the following

asymptotic distribution,
1
4
W (1)2 − 3

2

∫ 1

0
W (1)2 ds√∫ 1

0
W (1)6 ds

, (8)

where W (s) is the standard Brownian motion defined on s ∈ [0, 1]. When error terms (εt)

are serially correlated, Eq. (7) can be augmented as follows:

∆rt = δr3t−1 +
k∑

j=1

βj∆rt−j + εt. (9)

We tested the data for both when an intercept is included and when an intercept and

time trend are included. Results are shown in Table 3.

Table 3 around here

With the US index, the test rejects the null hypothesis of nonstationarity only for two

countries, Hong Kong and the UK. With the UK as the reference country, however, the test

rejects the null hypothesis for 10 countries at the 10% significance level. Allowing a time

trend, the test rejects the null for an additional 2 countries, the Netherlands and Sweden.

In combination with the results from the linear test results, our empirical findings yield a

maximum of 14 rejections out of 17 countries at the 10% significance level, while we obtained

a maximum 7 rejections out of 17 when the US serves as a reference country.7 These findings

imply that the UK stock index may be used as an anchor index in constructing international

equity portfolios. When deviations of national equity indices from the UK index are large, one

may short better performing assets while buying worse performing assets, since winner-loser

reversals are likely to happen. When the US stock index serves as the reference, one should

employ the momentum strategy because deviations of equity prices seem to be permanent.

4 Panel Unit Root Tests with Cross-Section Depen-

dence Consideration

It is known that the univariate ADF test has low power in small samples. In this section we

employ a series of panel unit root tests that are known to increase power over the univariate

7Note that the linear test shows the relative prices of France and Norway vis-à-vis the UK are stationary,
whereas the ESTAR does not. This may be due to the fact that the ESTAR test uses Taylor approximation
and could miss some useful information. See Kim and Moh (2010) for some discussion on the issue.
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tests (Taylor and Sarno (1998)).

As Phillips and Sul (2003) pointed out, however, the so-called first-generation panel unit

root tests such as Maddala and Wu (1999), Levin et al. (2002), and Im et al. (2003) are

known to be seriously over-sized (reject the null hypothesis too often) when the data are

cross-sectionally dependent. We first test this issue by employing the statistic proposed by

Pesaran (2004) described below in Eq. (10),

CD =

√
2T

N(N − 1)

(
N−1∑
i=1

N∑
j=i+1

ρ̂i,j

)
d→ N(0, 1), (10)

where ρ̂i,j is the pair-wise correlation coefficients from the residuals of the ADF regressions

(4). We report results in Table 4. The results imply a very strong degree cross-section

dependence. In what follows, therefore, we employ available second-generation panel unit

root tests with cross-section dependence consideration.

Table 4 around here

4.1 Linear Panel Unit-Root Test Analysis

We first employ Pesaran (2007)’s cross-sectionally augmented panel ADF (PADF) test given

by

CIPS(N, T ) = tN,T = N−1
N∑
i=1

ti(N, T ), (11)

where ti(N, T ) is the t-statistic for bi from the following least squares regression,

∆ri,t = ai + biri,t−1 + cir̄t−1 +

p∑
j=0

dij∆r̄t−j +

p∑
j=1

δij∆ri,t−j + ei,t. (12)

Here, r̄t is the cross-section average at time t, which proxies the common factor component

for i = 1, ..., N . Note that this is a cross-sectionally augmented version of the IPS (Im et al.

(2003)) test.

We report test results in Table 5. In contrast to empirical evidence from Balvers et al.

(2000), we obtain very weak panel evidence of stationarity even at the 10% significance level

when we control for cross-section dependence, irrespective of the choice of the reference coun-

try. This implies that the strong evidence of stationarity in Balvers et al. (2000) could have

been due to size distortion caused by a failure to account for the cross-section dependence.

Table 5 around here
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4.2 Nonlinear Panel Unit-Root Test Analysis

We next explore the panel evidence of nonlinear stationarity by employing a test proposed

by Cerrato et al. (2011). This test is an extension of the nonlinear ESTAR unit root test

by Kapetanios et al. (2003) to a panel version test in combination with the methodology

suggested by Pesaran (2007) to address the issue of cross-section dependence.

For this, we rewrite Eq. (6) as the following set of equations,

∆ri,t = ξiri,t−1{1− exp(−θr2i,t−d)}+ εi,t, and εi,t = δift + ui,t, (13)

where δi is a country-specific factor loading, ft is a common factor, and ui,t is a (possibly

serially correlated) idiosyncratic shock. Cerrato et al. (2011) suggest the following nonlinear

cross-section augmented IPS-type statistics,

tN,T = N−1
N∑
i=1

ti(N, T ), (14)

where ti(N, T ) is the t-statistic for βi,0 from the following least squares regression,

∆ri,t = αi + βi,0r
3
i,t−1 + γi,0r

3
t−1 +

p∑
j=1

(βi,j∆ri,t−j + γi,j∆r
3
t−j) + ei,t, (15)

where r̄t is the cross-section average at time t, which proxies the common factor component

for i = 1, ..., N . In the absence of cross-section dependence, γi,j = 0 for all i and j, and the

test statistic is reduced to nonlinear ESTAR test in Eq. (9).

We report test results in Table 6. It is interesting to see that the test does not reject

the null hypothesis for both reference cases at the 10% significance level. This is somewhat

puzzling because we obtained strong evidence of nonlinear stationarity from the univariate

ESTAR tests when the UK serves as the reference country. Since the panel test (14) has the

alternative hypothesis that states that there are stationary ri,t for i = 1, ..., N1 and N1 > 0,

and the univariate test rejects the null for 12 out of 17 countries, it would be natural to

expect panel evidence of stationarity. Yet, we do not find it. To look into this apparent

contradiction further, we turn to a dynamic factor analysis in what follows based on the

following conjecture.

If the first common factor is stationary and has dominating effects on ri,t in the short-

run, the stochastic properties of ri,t may resemble those of stationary variables even when

the idiosyncratic component is nonstationary. Even though the nonstationary idiosyncratic

component will dominate the stationary common factor in the long-run, unit root tests for
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finite horizon observations may reject the null of nonstationarity.

Table 6 around here

5 Dynamic Factor Analysis

In this section, we attempt to understand seemingly inconsistent statistical evidence from

the univariate and the panel unit root test when the UK serves as the base country. We

note that the panel unit root tests from the previous section control for the cross-section

dependence by taking and including the first common factor in the regression. We employ

the following factor structure motivated by the framework of the PANIC method by Bai and

Ng (2004), described as follows. First we write

ri,t = ai + λ
′
ift + ei,t,

(1− αL)ft = A(L)ut,

(1− ρiL)ei,t = Bi(L)εi,t,

(16)

where ai is a fixed effect intercept, ft = [f1 . . . fr]
′

is a r × 1 vector of (latent) common

factors, λi = [λi,1 . . . λi,r]
′

denotes a r × 1 vector of factor loadings for country i, and ei,t is

the idiosyncratic error term. A(L) and Bi(L) are lag polynomials. Finally, we assume that

ut, εi,t, and λi are mutually independent.

Estimations are carried out by the method of principal components. When ei,t is sta-

tionary, ft and λi can be consistently estimated irrespective of the order of ft. If ei,t is

integrated, however, the estimator is inconsistent because a regression of ri,t on ft is spuri-

ous. PANIC avoids such a problem by applying the method of principal components to the

first-differenced data. That is,

∆ri,t = λ
′

i∆ft + ∆ei,t (17)

for t = 2, · · · , T . Let ∆ri = [∆ri,2 · · ·∆ri,T ]′ and ∆r = [∆r1 · · ·∆rN ]. After proper nor-

malization, the method of principal components for ∆r∆r′ yields estimated factors ∆f̂t, the

associated factor loadings λ̂i, and the residuals ∆êi,t = ∆ri,1 − λ̂
′
i∆f̂t. Re-integrating these,

we obtain the following

f̂t =
t∑

s=2

∆f̂s, êi,t =
t∑

s=2

∆êi,s (18)

for i = 1, · · · , N .
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Bai and Ng (2004) show that when k = 1, the ADF test with an intercept can be used

to test the null of a unit root for the single common component f̂t. For each idiosyncratic

component êi,t, the ADF test with no deterministic terms can first be applied. Then, a panel

unit root test statistic for these idiosyncratic terms can be constructed as follows:

Pê =
−2
∑N

i=1 ln pêi − 2N

2
√
N

d→ N(0, 1). (19)

In Table 7, we report the linear and nonlinear unit root test for the estimated first

common factor. The tests reject the null of nonstationarity only for the case with the UK,

which implies that the first common factor is likely to be stationary.

Table 7 around here

In Figure 1, we plot the first five common factors and their relative portions of the stock

price deviations with the UK as the reference. Starting with initial 50% observations, we

use a recursive method to repeatedly estimate five common factors along with shares of

variations explained by each common factor from each set of samples. The graph shows that

the first common factor explains roughly about 45% of total variations, while other common

factors play substantially smaller roles.8 Put differently, the stationary first common factor

seems to play a dominant role in determining the stochastic properties of ri,t in the short-

run.9 Also, we estimate idiosyncratic factor loading coefficients (λi) in Eq. (16) that measure

country-specific degrees of dependence of ri,t on the common factor. Estimates are reported

in Figure 2. The results show that the first common factor represents each of ri,t fairly well

with a few exceptions of Hong Kong and Singapore.10

Figure 1 around here

Figure 2 around here

Note on the other hand that this first common factor resembles the dynamics of the proxy

common factor (cross-section means) in Eqs. (12) and (15) as we can see in Figure 2.

Figure 3 around here

8Similar patterns were observed when the US is the reference country.
9It will be eventually dominated by nonstationary idiosyncratic component in the long-run.

10Similar patterns were again observed when the US serves as the reference country.
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In addition to evidence of the linear and nonlinear stationarity of the common factor

with the UK shown in Table 7, we compare the speeds of transitions from the ESTAR model

specification for the common factors with the US and with the UK. For this purpose, we

estimate the scale parameter θ in Eq. (5) via the nonlinear least squares (NLLS) method to

evaluate the speed of transitions across the stationarity and nonstationarity regimes. Note

that we cannot estimate ξ and θ separately in Eq. (6). Following Kapetanios et al. (2003),

we assume ξ = −1.

We report a sample transition function estimate along with the 95% confidence bands

in Figure 3. We note that the transition function for the common factor with the US

reference may be consistent with nonstationarity, because the 95% confidence band of θ

hits the zero lower bound, and we cannot reject the possibility of a single regime, which is

the nonstationarity regime.11 With the UK, the confidence band of the transition function

remains compact (θ̂ was 1.308 and the standard error was 0.570).

Figure 4 around here

This evidence explains why the panel unit root tests fail to reject the null of nonsta-

tionarity, even when the univariate test rejects the null for many countries. To control for

cross-section dependence, the test procedures incorporated in Eqs. (12) and (15) take out

the dominant stationary common component, but leave the nonstationary idiosyncratic com-

ponents. Hence, the panel tests might fail to reject the null of nonstationarity. However,

the univariate unit root tests may reject the null because the dominant stationary compo-

nent overpower the idiosyncratic component. We confirm this conjecture via Monte Carlo

simulations in the next section.

6 Further investigation on Panel Results: Monte Carlo

Simulation Analysis

We implement an array of Monte Carlo simulations in this section to see how plausible our

conjecture from the previous section is. For this purpose, we construct 17 time series that

have a factor structure with a nonlinear stationary common factor motivated by our panel

ESTAR model. We assume that each of the 17 idiosyncratic components is nonstationary.

That is, 17 time series variables xi,t share the following common component,

11θ̂ was 1.746 and the standard error was 1.018, implying a negative value for the lower bound ( θ̂−1.96·s.e.).
Since θ is bounded below zero, the estimate assumes 0 for the lower bound.
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ft = ft−1 + ξft−1{1− exp(−θf 2
t−1)}+ µt, (20)

where ξ is set at −1 following Kapetanios et al. (2003) and µt is a mean-zero i.i.d. process.

The DGP assumes θ = 1.308, which is the estimate from the previous section for the 17

relative stock price indices relative to the UK. In addition to Eq. (20), we generate 17

independent nonstationary idiosyncratic components that are to be added to the common

factor to construct each time series as follows:

xi,t = λift + εi,t (21)

and

εi,t = εi,t−1 + ui,t, (22)

where ui,t ∼ N(0, 1). We used factor loading estimates (λi) from the PANIC estimations

in the previous section. Then we employ a nonlinear univariate unit root test and the

panel nonlinear unit root test. Repeating this process many times, we expect to see strong

evidence of stationarity from the univariate tests and weak evidence from the panel tests in

small samples, but weak evidence of stationarity from both types of tests in large samples

where nonlinear idiosyncratic components must eventually dominate the stationary common

factor.

We ran 3,000 Monte Carlo simulations for five different numbers of observations: 50, 100,

200, 300, and 500. In Table 8, we report the percentage of the mean and the median of the

the frequency of the rejections of the null of unit roots out of 17 at the 5% significance level

for the univariate ESTAR tests. For the panel test, we report the rejection rate at the 5%

level for each exercise.

We confirm our conjecture by these simulations. When the number of observation is small,

e.g., 50, the univariate ESTAR test rejects the null for many series about 50% frequency

on average. This tendency disappears quickly as the number of observation increases. For

example, when the number of observations is 500, only about 1 rejections out of 17 variables

were observed. For all cases, the panel ESTAR that removes the effect of the stationary

common factor rejected the null with near 0.5% frequency. Therefore, our empirical evidence

suggests that stock indices with the UK as the reference country possess a dominating

common factor that is nonlinear stationary, which makes it possible to profitably utilize a

contrarian strategy when deviations are big.

Table 8 around here
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7 Concluding Remarks

We revisited the topic of mean reversion in national stock prices across international stock

markets relative to the US and the UK using the Morgan Stanley Capital International

annual gross stock index data for 18 developed countries. We found strong evidence of mean

reversion for a maximum 14 out of 17 countries in the case of the UK (but not the US)

as the reference country, while very weak evidence of linear mean reversion was observed

irrespective of the choice of the reference country.

Implementing panel version linear unit root tests while controlling for cross-section de-

pendence provided weak evidence of stationarity in the univariate tests. The panel nonlinear

unit root test also failed to reject the null of nonstationarity even when the UK served as

the reference country. The results appear inconsistent.

To resolve this seeming puzzle, we estimated a common factor, then tested the null

of nonstationarity with linear and nonlinear stationarity alternatives. Our tests strongly

favor the stationarity for the first common factor from the panel when the UK serves as the

reference country. These results imply that the first common factor with the UK is stationary

and dominates nonstationary idiosyncratic components in small samples. That is, when the

first common factor dominates the nonstationary idiosyncratic component, the panel unit

root test that removes the influence of the stationary common factor may yield evidence

against stationarity even though it behaves as a stationary variable in finite samples, even

though it will become dominated by nonstationary variables in the long-run. Our Monte

Carlo simulation analysis confirms our conjecture.

Our empirical findings suggest that the UK equity index may be used as an anchor in

managing international equity portfolios. Big deviations of national equity prices from the

UK index may be accompanied by winner-loser reversal soon. Therefore, one may consider

short-selling better performing assets while buying worse performing ones. On the contrary,

one should employ the momentum strategy with the US index, because deviations of equity

prices are more likely to be permanent. This might explain the steady strong performance

of the US stock markets compared to those of other OECD countries.
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Table 1. Summary Statistics

Base Country: US
ID Country Mean Std Dev Skewness Kurtosis JB Min Max

1 Aus −0.414 0.341 −0.363 2.443 1.500 −1.239 0.132
2 Aut 0.179 0.521 0.163 2.834 0.241 −0.927 1.047
3 Bel 0.683 0.352 −0.503 3.464 2.196 0.000 1.267
4 Can 0.013 0.357 −0.202 2.761 0.394 −0.915 0.597
5 Den 0.729 0.363 −0.265 2.784 0.585 −0.144 1.420
6 Fra 0.179 0.240 0.035 3.572 0.594 −0.295 0.565
7 Ger 0.150 0.255 0.748 3.570 4.596 −0.338 0.699
8 HK 1.583 0.531 −0.312 4.125 2.962 0.000 2.615
9 Ita −0.981 0.436 0.687 3.712 4.286 −1.715 0.000
10 Jap 0.770 0.709 0.376 2.979 1.014 −0.191 2.345
11 Net 0.718 0.404 −0.088 2.054 1.659 −0.224 1.260
12 Nor 0.469 0.403 0.654 4.778 8.733 −0.465 1.237
13 Sing 0.767 0.514 0.287 4.215 3.235 −0.253 1.843
14 Spa −0.282 0.457 −0.110 3.305 0.254 −1.361 0.851
15 Swe 0.819 0.518 0.117 1.906 2.243 −0.258 1.732
16 Swi 0.418 0.258 −0.061 2.869 0.057 −0.189 0.833
17 UK 0.271 0.235 −0.593 4.944 9.298 −0.461 0.694

Base Country: UK
ID Country Mean Std Dev Skewness Kurtosis JB Min Max

1 Aus −0.684 0.375 −0.225 2.247 1.378 −1.413 0.063
2 Aut −0.092 0.541 0.910 4.223 8.615 −1.048 1.508
3 Bel 0.412 0.294 0.112 3.740 1.071 −0.169 1.165
4 Can −0.258 0.440 −0.086 3.192 0.120 −1.121 0.859
5 Den 0.458 0.362 0.347 3.084 0.877 −0.304 1.358
6 Fra −0.091 0.214 0.388 3.930 2.629 −0.549 0.602
7 Ger −0.121 0.281 1.631 8.696 77.207 −0.539 0.867
8 HK 1.312 0.424 −0.024 3.317 0.185 0.000 2.077
9 Ita −1.252 0.515 0.291 3.436 0.949 −1.991 0.141
10 Jap 0.499 0.639 0.491 3.038 1.728 −0.467 1.741
11 Net 0.447 0.302 −0.526 5.337 11.766 −0.384 0.832
12 Nor 0.198 0.426 0.988 5.015 14.271 −0.670 1.503
13 Sing 0.496 0.500 0.726 5.758 17.404 −0.458 1.479
14 Spa −0.553 0.573 0.204 4.719 5.596 −1.576 1.312
15 Swe 0.548 0.457 −0.121 4.193 2.654 −0.293 1.404
16 Swi 0.147 0.278 0.355 4.238 3.653 −0.363 0.816
17 US −0.271 0.235 0.593 4.944 9.298 −0.694 0.461

Note: JB refers the Jarque-Bera statistics, which has asymptotic χ2 distribution with 2 degrees

of freedom. For the US reference, most of the stock index deviation shows normality except for

Norway and the UK whereas the stock index deviations for 6 countries (Austria, Germany, the

Netherlands, Norway, Singapore and the US) show non-normality with the UK reference.
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Table 2. Univariate Linear Unit Root Tests

US UK
ADFc ADFt ADFc ADFt

Aus -1.895 -1.722 -2.042 -1.499
Aut -1.651 -2.268 -1.746 -2.659
Bel -2.526∗ -2.420 -3.099† -3.098∗

Can -1.260 -1.247 -1.537 -1.466
Den -2.060 -2.401 -2.285 -2.422
Fra -2.663∗ -2.804 -3.592‡ -3.553∗

Ger -2.667∗ -2.671 -3.036† -3.326∗

HK -3.275† -3.692‡ -3.621‡ -4.204‡

Ita -2.278 -2.735 -2.452 -3.067∗

Jap -1.030 -1.992 -1.172 -2.627
Net -1.717 -1.416 -2.047 -3.394†

Nor -3.013† -3.005 -2.963† -3.084
Sing -2.268 -2.666 -2.139 -2.865
Spa -1.840 -1.806 -1.794 -1.696
Swe -1.303 -3.452† -1.773 -3.866†

Swi -2.161 -2.726 -2.270 -2.380
UK -2.637∗ -2.680 - -
US - - -2.637∗ -2.680

Note: ADFc and ADFt denote the augmented Dickey-Fuller test statistic when an intercept

and when both an intercept and time trend are present, respectively. *, †, and ‡ denote

significance levels at the 10%, 5%, and 1% level, respectively.
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Table 3. Univariate Nonlinear Unit Root Tests

US UK
NLADFc NLADFt NLADFc NLADFt

Aus -1.094 -1.078 -2.321 -1.440
Aut -1.488 -2.113 -2.788∗ -3.448†

Bel -1.904 -1.763 -3.076† -3.211∗

Can -1.883 -1.971 -3.469† -2.978
Den -1.930 -2.725 -3.923‡ -3.321∗

Fra -2.502 -2.503 -2.484 -2.473
Ger -2.508 -2.541 -2.697∗ -2.798
HK -2.641∗ -2.817 -2.639∗ -3.495†

Ita -2.180 -2.470 -3.095† -4.288‡

Jap -1.244 -1.864 -1.717 -2.044
Net -1.401 -1.344 -1.899 -3.889†

Nor -1.906 -1.962 -2.585 -2.724
Sing -2.132 -2.500 -2.221 -3.007
Spa -2.148 -2.166 -2.613∗ -2.764
Swe -1.416 -2.253 -1.299 -3.246∗

Swi -1.881 -2.628 -2.993† -2.929
UK -4.853‡ -4.858‡ - -
US - - -4.853‡ -4.858‡

Note: NLADFc and NLADFt denote the ESTAR test statistic (Kapetanios et al., 2003) when

an intercept and when both an intercept and time trend are present, respectively. *, †, and ‡
denote significance levels at the 10%, 5%, and 1% level, respectively. Asymptotic critical values

were obtained from Kapetanios et al. (2003).
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Table 4. Cross-Section Dependence Test

CSD p-value

US 19.753 0.000
UK 24.586 0.000

Note: This test is proposed by Pesaran (2004).
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Table 5. Panel Linear Unit Root Test Results

PADFc PADFt

US -2.056 -2.573
UK -2.012 -2.523

Note: Critical values were obtained from Pesaran (2007). The test fails to reject the null of

nonstationarity for both reference countries.

Table 6. Panel Nonlinear Unit Root Test Results

NLPADFc NLPADFt

US -1.345 -1.481
UK -1.471 -1.588

Note: Critical values were obtained from Cerrato et al. (2011). The test fails to reject the null

of nonstationarity for both reference countries.
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Table 7. Test for the First Common Factor

Linear Nonlinear
ADFc ADFt NLADFc NLADFt

US -2.177 -2.499 -1.289 -1.804
UK -2.845∗ -2.967† -3.728† -3.919†

Note: *, †, and ‡ denote significance levels at the 10%, 5%, and 1% level, respectively.
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Table 8. Simulation Results

Univariate ESTAR Panel ESTAR
NLADFc NLADFt NLPADFc NLPADFt

nob=50 Median 52.9% 58.8% 1.4% 0.7%
Mean 52.9% 60.0%

nob=100 Median 41.2% 47.1% 0.7% 0.6%
Mean 39.4% 44.7%

nob=200 Median 23.5% 29.4% 0.2% 0.1%
Mean 26.5% 30.0%

nob=300 Median 17.6% 23.5% 0.5% 0.1%
Mean 20.6% 5.9%

nob=500 Median 17.6% 17.6% 0.2% 0.0%
Mean 15.9% 17.1%

Note: The table shows simulation results. Numbers in the Univariate ESTAR section represent

percentage of the mean and median of the frequency of rejections of the null of unit roots when

univariate ESTAR test is employed for the 3000 iterations. Numbers in the Panel ESTAR

section represent percentage of rejections of the null of unit roots when the Panel ESTAR test

is employed for the 3000 iterations.
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Figure 1. Cumulative Share of Variation by Five Common Factors: UK

Note: A recursive method is used to repeatedly estimate the first five common factors using

the initial 50% observations as the split point. We report shares of variations explained by the

common factors from each set of samples.
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Figure 2. Factor Loading Coefficients Estimation: UK

Note: We report factor loading coefficients (λi) in Equation (16). They represent the country-

specific dependence on the common factor.
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Figure 3. First Common Factor Estimates: UK

Note: We report two measures of the common factor: the first common factor (dashed line) via

the PANIC (Bai and Ng, 2004) and the cross section mean (solid) as in Pesaran (2007).
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Figure 4. Transition Function Estimates

Note: We report graphs of one minus the exponential transition function 1− exp(−θx2) for the

common factor estimates with the US and the UK. We used θ = 1.746 for the US reference and

θ = 1.308 for the UK reference, obtained from the data. Dashed lines are 95% confidence bands.

The lower bound for the US is negative, so we used 0 because θ is bounded below zero.
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