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Abstract

This study shows how the two alternative saving motives, life-cycle consumption smoothing

and parental bequests, determine the relation between population growth and R&D-based eco-

nomic growth, i.e. the sign of the "weak scale-effect". We take a textbook R&D-based growth

model of infinitely living agents with no weak-scale effect, and analyze it in an Overlapping

Generations framework - with and without bequest saving-motive. We show how the different

saving motives determine the relation between population growth and per-capita income growth,

which proves to be ambiguous in general, and may also be non-monotonic. Hence, we conclude

that the counterfactual weak-scale effect that is present in the second and third generations

of R&D-based growth models of infinitely-living agents depends on their specific demographic

structure, and thus is not inherent to R&D-based growth theory itself.
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1 Introduction

The second and third generations of R&D-based growth models were criticized for presenting a

counterfactual weak scale-effect, which is a positive relation between population growth and eco-

nomic prosperity1. A recent line of research, aimed to align the theory with empirical evidence,

has proposed several modifications that yield ambiguous and non-monotonic weak-scale effect. A

common element in these modified models is the introduction of human capital as a productive

input in the R&D sector; See for example Dalgaard and Kreiner (2001), Strulik (2005), Bucci (2008,

2015), and Diwakar and Sorek (2016a,b).

Following the seminal works of Romer (1990), Grossman and Helpman (1991a,b) and Aghion

and Howitt (1992), this literature has focused, almost exclusively, on the analysis of infinitely

living homogenous agents2. Recent exceptions are the works by Strulik et al.(2013) and Prettner

(2014), which studies the relation between population growth and innovation based prosperity in

the Overlapping Generations (OLG) framework, with finitely living agents3.

In this work we show that the different demographic structures of the two macroeconomic

workhorse frameworks has, by itself, immediate implication to the presence of weak scale effect in

R&D growth models. To this end, we take a standard textbook R&D-growth model, which was

written for infinitely living agents with no human capital accumulation, and place it in the OLG

framework to derive comparable results4.

The two canonical demographic structures generate different incentives for saving. The infinitely

living agents are assumed to share their assets (patent ownership in the current context and physical

capital in the neoclassical models) with their offspring, and they fully internalize this into their

saving decisions. Therefore, in this framework savings involve bequests, but they have no life-

cycle consideration motive as labor supply is constant over life5. By contrast, in the standard

OLG framework saving is aimed to smooth consumption through a finite lifetime which spans over

working years and retirement period, and there are no intergenerational bequests. Hence, in this

framework saving is motivated purely by life-cycle considerations.

We find that in the absence of bequest saving-motive, the effect of population growth on eco-

nomic growth depends solely on the inter-temporal elasticity of substitution (IES ): it is positive

1Seminal models of the second and third generations models are Jones 1995, Kortum 1997, and Segerstrom 1998,
and Peretto 1998, Young 1998 and Howitt 1999, respectively. Jones 1999 provides a compact comparative summary
of this literature. See Strulik et al. (2013) and Boikos et al.(2013) for recent summaries of the empirical literature.

2Which built on the neoclassical framework of Ramsey—Cass—Koopmans.
3Building on Diamond’s (1965) neoclassical framework, Prettner (2014) shows that the relation between fertility

rate and economic growth may depend on the provision of public education: teachers’productivity in the sector and
per-student spending. Strulik et al.(2013) developed a unified growth model that incorporates endogenous fertility
and transition from neoclassical technology to R&D-based growth.

4Earlier literature already showed that the different demographic structures has immediate implications to other
key issues in neoclassical growth models - such as tax-policy, convergence patterns, and the feasibility of growth itself.
Dalgaard and Jensen (2009, p.1639) summarize this literature. Sorek (2011) highlights the implications of the OLG
demographic structure to patent policy.

5The infinitely living agents can be thought equivalently, and more realistically, as finitely living ones with strong
altruism toward their offspring.
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(negative or zero) if the IES is greater than (lower than or equal to) one6. In comparison, the

corresponding model with infinitely living agents yields no-relation between population growth and

economic growth regardless of the IES value. In both models, population growth increases future

demand for patented machines, thereby increasing the equilibrium interest rate . However, for the

infinitely living agents population growth works also as a demographic discounting factor which

discourages saving7, and thus the two effects cancel out. In the OLG economy, population growth

does not generate direct negative effect on saving and, due to the life-cycle structure of the OLG

framework, the effect of the increased interest rate on saving depends on the IES.

Once we introduce bequest-motive for saving, the effect of population growth on economic

growth becomes complex, and possibly non-monotonic. We show how it is determined by both the

IES and the specification of parental utility from bequest-giving - namely, the interaction between

the level of bequest per-child and the number of kids in parents’utility. Parents may care only about

their per-child bequest giving, in line with Millian specification. However, their utility from the

level of per-child bequest may also increase or decrease with the number of children, consistently

with Benthamite specification and the formulation emphasized by Barro and Becker (1989) and

Becker et al.(1990), respectively. The latter specification forms a trade-off between the number

of kids and per-child bequest level in parent’s total utility from giving. We will show that this

specification is crucial to the effect of population growth on economic prosperity.

Previous works showed that in R&D-based models with human capital accumulation and infi-

nitely living agents, dynastic altruism affects the sign and strength of weak scale effect, based on

the Millian and Benthamite specifications; See Dalgaard and Kreiner (2001), Strulik (2005), and

Bucci (2013). In Diwakar and Sorek (2016b) we generalize these results by allowing non-linear

altruism factor in the Barro-Becker (1989) fashion to establish non-monotonic weak scale effect.

There however, the mechanism at work is different from the one studied here: it involves the tension

between a positive effect of population growth on saving in the presence of dynastic altruism and

its negative (diluting) effect on the accumulation of human capital.

Our study is closely related to the work by Dalgaard and Jensen (2009), hereafter "DJ", on

the effect of alternative saving motives on the presence of strong scale effect - that is the effect

of population size on economic growth. They showed that population size has positive effect on

growth when the bequest motive is dominant but it may turn negative when the life-cycle motive

dominates, and may be non-monotonic as well. Their work adds bequest saving-motive to an

otherwise standard OLG model with capital externalities, and derives comparative statics with

respect to the values of bequest motive parameter.

Our analysis follows a similar methodological approach to study the effect of alternative saving

motives on presence of weak scale-effect, yet departing from DJ along two lines. First, we study a

full-fledged textbook model of R&D-based growth, and analyze it in the OLG framework, to derive

comparable results with the infinitely-living-agents framework.

6The empirical literature suggests that the IES is lower than one; See Hall (1988), Beaudry and Wincoop (1996),
Ogaki and Reinhart (1998), Engelhardt and Kumar (2009).

7Following the standard Euler condition
·
c
c
= 1

θ
(r − ρ− n)
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Second, and most importantly, as population in our analysis is constantly growing, we are

required to address the interaction between the level of bequest per-child and the number of kids

in parents’utility. This specification, which is not relevant for DJ’s analysis of strong scale effect,

proves to be crucial to the relation between population growth and economic growth. Nonetheless,

our results confirm that the different demographic structures of the two macroeconomic workhorse

models have immediate implications to the role of population in modern growth theory.

The remainder of the paper is organized as follows. Section 2 presents the detailed model.

Section 3 studies weak-scale effects with life-cycle saving only. Section 4 introduces the bequest

motive for saving, and Section 5 concludes this study.

2 The Model

We take the variety-expansion growth model presented in the textbook of Barro and Sala-I-Martin

(2004, ch.6)8, hereafter "BS", and accommodate it to the OLG framework. Hence, preferences and

technologies presented below, and the implied static optimization problems of the firms are identical

to those presented in BS. However, unlike BS who study the infinitely living agents, we analyze

the OLG demographic setup: each consumer lives for two periods. In the first period she supplies

one unit of labor and in the second period she retires. Cohort (generation) size is increasing at an

exogenous constant rate n, which is also the growth rate of the labor force and overall population.

2.1 Production and Innovation

The final good Y is produced by perfectly competitive firms with labor and differentiated interme-

diate goods, to which we refer as "machines"

Yt = AL1−αt

Nt∫
0

Kα
i,t di α ∈ (0, 1) (1)

where A is a productivity factor, Lt and Ki,t are labor input and the utilization level of machine

i in period t, respectively, and Nt measures the number of available machine varieties9. Once

invented, machines variety is eternally patented. Machines fully depreciate after one usage period,

and the final good price is normalized to one. Under symmetric equilibrium, utilization level for

all machines is the same, i.e. Ki,t = Kt ∀ i , and thus total output is

Yt = ANtKt
αL1−αt (1a)

The labor market is perfectly competitive, and therefore the equilibrium wage and aggregate labor

income are wt = A(1− α)NtKt
αL−αt and wtLt = A(1− α)NtKt

αL1−αt , respectively. The profit for

8Aghion and Howitt (2009) use the same model in Chapter 3.4 of their textbook.
9The elasticity of substitution between different varieties is 1

α
.
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the final good producer is πi,t = AL1−αt

Nt∫
0

Kα
i,t di−

Nt∫
i=1

pi,tKi,t di−wtLt , where pi,t is the price of inter-

mediate good i. Profit maximization yields the demand for each machine: Kd
i,t = A

1
1−αLt

(
α
pi,t

) 1
1−α
.

Given this demand, the periodic surplus for the patented machine i is PSi,t = [pi,t − (1 + rt)]Kd
i,t,

which is maximized by the standard monopolistic price pi,t = 1+rt
α ∀i, t

10. Plugging this price in

Kd
i,t and then back in (1a) yields the following expression for total output

Yt = A
1

1−α

(
α2

1 + rt

) α
1−α

NtLt (1b)

where yt ≡ Yt
Lt
. Innovation technology follows the specification of BS in the analysis of scale effect11,

where the cost of innovating a new variety, denoted ηt, is

ηt = ηA
1

1−α

(
α2

1 + rt

) α
1−α

Lt (2)

Where η > 0 is a cost parameter. New and old varieties play equivalent role in production as, re-

flected in their symmetric presentation in (1). Therefore the market value of old varieties equals the

cost of inventing a new one - ηt. As we assume machine-varieties are patented forever, patents are

being traded inter-generationally - young buy patents from old. Hence the return on patent own-

ership - over old and new technologies is 1 + rt+1 =
PSi,t+1+ηt+1

ηt
. Plugging the explicit expressions

for the surplus and the innovation cost and imposing stationary interest rate, we obtain12

1 + r = (1 + n)

[
α(1− α)

η
+ 1

]
, ∀t (3)

Following (1b), output growth rate and the per-capita output growth13, denoted gY and gy respec-

tively, depend on the expansion rate of machine-varieties range, denoted gN

1 + gY,t+1 ≡
Yt+1
Yt

= (1 + n)(1 + gN,t+1) (4)

1 + gy,t+1 ≡
yt+1
yt

= 1 + gN,t+1

10BS abstract from the timing of investment, setting the cost of each machines (in terms of output units) to one,
and therefore having the optimal monopolistic price p = 1

α
(equations 6.9-6.10 on pp. 291-292 there). In their

continuous time framework this abstraction has no effect on any of the results (in our framework this abstraction
would have a quantitative effect on our results).
11See Chapter 6.1.7 on the analysis of scale effect and population growth (p.302 there). Equation (2) implies that

variety expansion rate, which defines productivity growth in this model, depends positively on the share of output
devoted to R&D. This specification aligns the model with the empirical data summarized in that chapter, which were
originally pointed out by Jones (1995).
12Our results would hold if we assume that patents ownership is transferred freely from parents to off-spring, like

in the model with infinitely living agents. Then, however, the interest rate would be 1 + r = (1+n)α(1−α)
η

, which
corresponds to the one presented in BS (adjusted for continuous time).
13Notice that total population and the labor force grow at the same rate, implying equal growth rates for per-worker

output and per-capita output.
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2.2 Preferences

Lifetime utility is derived from consumption over two periods, based on the CRRA instantaneous-

utility specification

U =
c1−θt

1− θ + ρ
c1−θt+1

1− θ (5)

where ρ ∈ (0, 1) is the subjective discount factor, and 1
θ is the elasticity of inter-temporal substitu-

tion. Young agents allocate their labor income between consumption and saving, denoted s. The

solution for the standard optimal saving problem is st = wt

1+ρ−
1
θ (1+r)

θ−1
θ

. Hence, aggregate saving

is St = wtLt

1+ρ−
1
θ (1+r)

θ−1
θ

, which after substituting the explicit expressions for wt becomes

St =
Nt(1− α)A

1
1−α

(
α2

1+r

) α
1−α

Lt

1 + ρ−
1
θ (1 + r)1−

1
θ

(6)

3 Life-Cycle Saving

The saving from labor income in (6) are allocated to three types of investment: buying patents

over old technologies, inventing new varieties, and forming specialized machines. Hence aggregate

investment in each period, It , satisfies

It = Nt+1

[
ηt +A

1
1−αLt+1

(
α2

1 + r

) 1
1−α
]

(7)

Notice that higher population growth rate between period t and t+ 1, has direct positive effect on

the demand for each machine variety - due to the increase in L. However, following (3), a higher

population growth rate also increases the interest rate, which thereby increases machines price and

therefore decreases the demand for each machine variety. By equalizing (6) and (7), we impose the

equilibrium condition It = St, to obtain the dynamic equation that governs variety expansion rate:

Nt+1

Nt
≡ 1 + gN = 1 + gy =

(1− α)A
1

1−α
(
α2

1+r

) α
1−α

Lt[
ηt +A

1
1−αLt+1

(
α2

1+r

) 1
1−α
] [
1 + ρ−

1
θ (1 + r)1−

1
θ

] (8)

Plugging (2) and (3) in (8) yields

1 + gy =

(
α(1−α)

η + 1
)
(1− α)

(α+ η)

[
1 + ρ−

1
θ

[
α(1−α)(1+n)

η

]1− 1
θ

] (8a)

Proposition 1 With no bequest motive the effect of population growth on per-capita output growth
depends on the sign of 1− θ.
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Proof. Proof is in equation (8a).

In the corresponding model of infinitely living agents, presented in BS, aggregate consumption

growth follows the standard Euler equation14:
·
C
C =

1
θ (r − ρ), and per-capita consumption follows

·
c
c =

1
θ (r − ρ− n) where the interest rate is given by

15 r = n + α(1−α)
η . Hence, the stationary

growth rates for aggregate and per-capita consumption, which apply also for aggregate and per-

capita income are

gC,Y =
1

θ

[
n+

α (1− α)
η

− ρ
]
, gc,y =

1

θ

[
α (1− α)

η
− ρ
]

Hence, in the corresponding model of infinitely-living agents population growth has no effect on

per-capita output growth. DJ showed that, in the absence of bequest, the sign of the strong

scale effect in their model depends not only on the IES but also on technological parameters (see

Theorem 1 there). For the corresponding technological parameters we are employing here - unit

elasticity of substitution between machines and labor - their model economy presents strong scale

effect for IES = 1 (see discussion of Corollary 1 on p.1643 there), whereas we find no weak-scale

effect for our model.

4 Bequests

We introduce bequest motive for saving that resembles a joy-of-giving in consumers’preferences,

similar to DJ

u(ct, ct+1, bt) =
(wt +

bt−1
1+n − st)

1−θ

1− θ + ρ

 [st(1 + r)− bt]1−θ
1− θ + κ(1 + ϕ (n))

(
bt
1+n

)1−θ
1− θ

 (9)

where bt is the total bequest left by a representative parent in period t. The parameter κ ≥ 0

measures the weight placed on utility from bequest. Our formulation departs from DJ by the

term ϕ (n), which captures potential interaction between the number of kids and the utility from

per-child bequest-giving level. At this point we do not define exact specification for ϕ (n), but we

will further discuss below, following Proposition 1.

Differentiating (9) with respect to s and b we obtain the following first order conditions

st =
wt +

bt−1
1+n

ρ−
1
θ (1+r)

θ−1
θ

1+(1+n)
θ−1
θ [κ(1+ϕ(n))]

1
θ

+ 1

, bt = st
1 + r

(1+n)
1−θ
θ

[κ(1+ϕ(n))]
1
θ
+ 1

(10)

14Equation (6.22) on p.295 there.
15Equation (6.35) on p. 302 there.
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The first condition in (10) implies that aggregate savings is given by

St =
(1− α)A

1
1−αNt

(
α2

1+r

) α
1−α

Lt +Bt−1

ρ−
1
θ (1+r)

θ−1
θ

1+(1+n)
θ−1
θ [κ(1+ϕ(n))]

1
θ

+ 1

(11)

Where Bt−1 =
Ltbt−1
1+n , is aggregate bequests given to workers who were born in period t. Notice

that for κ = 0 the aggregate saving level defined in (11) falls back to the one presented in (6).

The denominator of (11) reveals the way bequest motive interacts with the weak scale effect in

determining aggregate saving and thereby economic growth: the term (1 + n)
θ−1
θ marks the diluting

effect of n on per-child bequest level. The sign of this effect on saving, just like the interest rate,

depends on θ, i.e. the IES. The term [κ(1 + ϕ (n))]
1
θ marks the strength of the saving motive for

per-child bequest-giving. The impact of n on this term depends on the sign of ϕ′ (n).

The second condition in (10) implies that Bt−1 = 1+r(
(1+n)

1−θ
θ

[κ(1+ϕ(n))]
1
θ

+1

)St−1, and the equilibrium
condition St−1 = It−1 requires

Bt−1 =
1 + r(

(1+n)
1−θ
θ

[κ(1+ϕ(n))]
1
θ
+ 1

)Nt

(
ηt−1 +A

1
1−αLtα

2
1−α
)

Substituting the latter expression along with (3) back into (11) and equalizing to (7), i.e. setting

St = It, we obtain

Nt+1

Nt
=

[
(1−α)
α+η

[
(1 + n)

1−θ
θ + [κ(1 + ϕ (n))]

1
θ

]
+ [κ(1 + ϕ (n))]

1
θ

] [
α(1−α)

η + 1
]

ρ−
1
θ

[
α(1−α)

η + 1
] θ−1

θ
+ (1 + n)

1−θ
θ + [κ(1 + ϕ (n))]

1
θ

(12)

Rearranging (12) yields

Nt+1

Nt
=

[
(1−α)
α+η +

1
1+ψ

] [
α(1−α)

η + 1
]

ρ−
1
θ (1+n)

θ−1
θ

[
α(1−α)

η
+1
] θ−1

θ

1+ψ−1
+ 1

(12a)

Where ψ ≡ (1+n)
1−θ
θ

[κ(1+ϕ(n))]
1
θ
. The growth rate defined in (12a) presents complex impact of the population

growth rate, which works through the bequest motive that is captured in ψ and the interest rate

effect presented in the denominator of (12a). The sign of the interest-rate effect depends solely

on the IES, i.e. θ, as defined in Proposition 1. The sign of the bequest motive effect, i.e. the

sign of ∂ψ∂n , depends on the sign of (1− θ) (1 + n)
−1 − ϕ′(n)(1 + ϕ (n))−1, which is a function of

n. Hence (12a) implies ambiguous effect of population growth on per-capita output growth that

may be non-monotonic. To further characterize the relation between population growth and output

growth, we focus first on the case θ = 1 for which (12) becomes
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Nt+1

Nt
=

1
1

ρ[1+κ(1+ϕ(n))] + 1

[
(1− α)
α+ η

+
1

1
κ(1+ϕ(n)) + 1

] [
α(1− α)

η
+ 1

]
(13)

Proposition 2 In the presence of bequest saving-motive, for θ = 1 the effect of population growth
on per-capita income growth, ∂gy∂n , depends solely on the sign of ϕ

′ (n).

Proof. Differentiating (13) for n reveals that sign of ∂gy∂n is given by the sign of −ϕ
′(n)(1+ϕ (n))−1.

Hence, if θ = 1 and parent care about per-child bequest only, i.e. ϕ (n) = 0, there is no weak

scale effect that is ∂gy∂n = 0. These parental preferences are in line with the Millian preference spec-

ification employed in BS and DJ. By comparison, in BS there is no weak scale effect for any value

of θ, and DJ find that for θ = 1 there is strong scale effect for the technological parameters used in

our model16. For the case ϕ′(n) > 0 (< 0), which is in line with the Benthamite ("Beckerian"17)

specification, Proposition 2 implies positive (negative) weak scale effect.

We turn now to further explore the case where parents care about per-child bequest giving

ϕ (n) = 0, for which equation (12) becomes

Nt+1

Nt
=

[
1−α
α+η

(
κ−

1
θ (1 + n)

1−θ
θ + 1

)
+ 1
] [

α(1−α)
η + 1

]
ρ−

1
θ κ−

1
θ

[
α(1−α)

η + 1
] θ−1

θ
+ κ−

1
θ (1 + n)

1−θ
θ + 1

(14)

Proposition 3 For ϕ (n) = 0, the effect of population growth on per-capita output growth, ∂gy∂n , is
positive (negative) for suffi ciently weak (strong) bequest motive.

Proof. Differentiating (14) for n reveals that, for θ < 1 (θ > 1), ∂gy
∂n > 0 if ρ−1

(
1−α
α+η

)θ [
α(1−α)

η + 1
]θ−1

>

κ ( ρ−1
(
1−α
α+η

)θ [
α(1−α)

η + 1
]θ−1

< κ). for θ = 1, the sign of ∂gy∂n is independent of κ as already

stated in Proposition 2.

By comparison, DJ find that suffi ciently strong bequest motive is necessary for the presence of

strong scale effect in their model, where the bequest motive is defined solely by the parameter κ,

as here.

5 Conclusions

This study shows how the two alternative saving motives - life-cycle considerations and intergenera-

tional bequests, determine the relation between population growth and economic prosperity. First,

16See Corollary 2 on p. 1643 there for σ = 1 (by their notation), which is the elasticity of substitution between
labor and capital in our model.
17Presented in Barro and Becker (1988) and Becker et al.(1990).
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we showed that in the standard OLG economy, where life-cycle considerations are the sole saving

motive, the effect of population growth on economic growth depends on the IES, whereas in our

reference textbook model of infinitely living agents there is no weak scale effect for any value of the

IES.

Acknowledging that both modelling approaches are unrealistically extreme, we also analyzed a

hybrid model with both bequest and life-cycle saving motives. In this case the relation between

population growth and economic growth is complex in general and may be non-monotonic, as it

depends on the exact specification of the bequest motive.

In particular, for the more empirically valid case, of low inter-temporal elasticity of substitution,

we find that the effect of population growth on economic growth depends on how parent utility

from per-child bequest level changes with the number of children. This property of parental utility

has already been identified as central in other contexts of the literature on economic growth.

Our results are in line with Dalgaard Jensen (2009) who showed that strong scale effect depend

on the saving motive in a model where growth is driven by capital externalities. We conclude that

the role of population in modern growth theory interacts with the assumed intergenerational links

and the demographic structure of the model economy. Hence, the counterfactual relation between

population and output growth rates that present in models of infinitely living agents depends on

their specific demographic structure, and thus is not inherent to R&D-based growth theory itself.
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