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ABSTRACT

When monetary policy faces a zero lower bound (ZLB) constramn the nominal interest
rate, a minimum state variable (MSV) solution may not exigireif the Taylor principle holds
when the ZLB does not bind. This paper shows there is a cladeatff between the expected
frequency and average duration of ZLB events along the kenyraf the convergence region—
the region of the parameter space where our policy functEnation algorithm converges to
an MSV solution. We show this tradeoff with two alternativechastic processes: one where
monetary policy follows a 2-state Markov chain, which exogesly governs whether the ZLB
binds, and the other where ZLB events are endogenous duedoutit factor or technology
shocks. We also show that small changes in the parameteng stdchastic processes cause
meaningful differences in the decision rules and where tti# Hinds in the state space.
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1 INTRODUCTION

Since the beginning of the Great Recession in late 2008, raanfral banks around the world
have targeted a policy rate near zero and promised to maimtaiv rate until economic conditions
improve. Despite this policy and numerous unconventionétigs, most of these countries face
elevated unemployment levels and anemic growth five yetas [Bhis experience has ignited new
research that studies the impacts of the zero lower bounB)Yzh the nominal interest rate.

A ZLB constraintis similar to a monetary policy rule that as@mnally pegs the nominal interest
rate, but where households never expect the interest ré&d# b@low zero. If the central bank does
not switch rules, then it is well known in a linear model thadeterminacy occurs when the Taylor
(21993) principle (i.e., the principle that monetary polpips down prices by adjusting the nominal
interest rate more than one-for-one with inflation) doeshdd. This means that if the household
expects the central bank to always peg the nominal inteagst then the price level, and hence
inflation, is not pinned down. If the household expects thared bank to occasionally peg the
nominal interest rate, then the fraction of time the certieaik satisfies the Taylor principteay
provide enough price stability to deliver a determinateildziium [Davig and Leeper (2007)].

We first show the convergence region—the region of the paemspace where our policy
function iteration algorithm converges to a minimum stadeable (MSV) solution—is identical
to the determinacy region that Davig and Leeper (2007) ddnva Fisherian economy with a
Markov-switching monetary policy rule. We then locate tloevergence region in a nonlinear
New Keynesian model with a ZLB constraint. The boundary eftbnvergence region imposes
a clear tradeoff between the expected frequency and averagédon of ZLB events. We show
this tradeoff with two alternative stochastic processa® where monetary policy follows 2
state Markov chain, which exogenously governs whether thi2ldnds, and the other where ZLB
events are endogenous due to technology or discount faotmks. We also show that small
changes in the parameters of the stochastic processesmaasegful differences in the decision
rules and where the ZLB binds in the state space, which agfggnation and policy analysis.

Within the class of linear Markov-switching rational expons models, Farmer et al. (2009,
2010), Barthélemy and Marx (2013), and Cho (2013) provertba-MSV solutions may exist even
when the MSV solution is determinate. To be clear, our atboridoes not converge in regions
of the parameter space that are typically considered inu@tate (e.g., in fixed regime models
without a ZLB constraint, our algorithm only converges wiiea Taylor principle is satisfied), but
it cannot capture any non-MSV solutions that may exist whearavergent MSV solution exists.
Studying non-MSV solutions in models with a ZLB constraigtan important research topic,
but we believe locating regions of the parameter space #lated a convergent MSV solution is
significant since most macroeconomic research, includstignation, is based on MSV solutions.

The ZLB constraint imposes an unavoidable nonlinearityhii nonetary policy rule. The
literature has relied on several different techniques tal edth this challenge. One common
technique is to break the problem into pre- and post-ZLBqaksie.g., Braun and Korber (2011);
Braun and Waki (2006); Christiano et al. (2011); Eggertsaod Woodford (2003); Erceg and
Linde (2010); Gertler and Karadi (2011)]. With this approaa large unanticipated shock causes
the ZLB to bind. Each period, there is a probability that tlenmal interest rate exits the ZLB.
Once the nominal interest rate exits the ZLB, there is no chaf returning. The drawback with
this simplifying assumption is that if a shock causes the ZaBind in one period, there is no

1Barthélemy and Marx (2013) refer to unique bounded MSV tsmhs as bounded Markovian solutions.
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reason to expect that the same shock would not cause the ZhiBdon a future period. Much of
the literature also linearizes the equilibrium systemegtthe monetary policy rule, which causes
approximation error [Braun et al. (2012); Fernandezavidirde et al. (2012); Gavin et al. (2014)].
These approaches make the algorithm numerically tractadsause they do not rely on a grid-
based solution method, but they also have drawbacks whidlvaitw solving the fully nonlinear
model to accurately account for the expectational effecgpog to and leaving the ZLB.

A recent segment of the ZLB literature uses global soluti@ihods to solve fully nonlinear
models with a ZLB constraint [e.g., Aruoba and Schorfhe2igl@); Basu and Bundick (2012);
Fernandez-Villaverde et al. (2012); Gavin et al. (2014)stet al. (2013); Mertens and Ravn
(2013); Nakata (2012); Richter et al. (2013); Wolman (20.05)owever, all of the work on de-
terminacy uses a perfect foresight setup [e.g., AlstadlagichHenderson (2006); Benhabib et al.
(2001a,b)]. Although we do not provide formal proofs, oumarical convergence regions demon-
strate the restrictions these nonlinear solution methads &nd the challenges of estimating con-
strained nonlinear models with a patrticle filter [Fernan¥félaverde and Rubio-Ramirez (2007)].

The paper is organized as followSection 2provides some numerical and analytical evidence
for the link between determinacy and convergence in a siffigleerian economySection 3lays
out the constrained nonlinear model, baseline calibrafiod our solution procedur&ections 4
and5 define the two alternative stochastic processes that dreve¢onomy to the ZLB and show
the tradeoff between the frequency and average duratiohBfeXents.Section 6concludes.

2 THE LINK BETWEEN DETERMINACY AND CONVERGENCE SOME EVIDENCE

Davig and Leeper (2007) study determinacy in linear modelsdo not include a ZLB constraint.
Their models contain two monetary policy rules—one thatraggjvely responds to inflation and
one that reacts less aggressively to inflation—governed bygtate Markov chain. The special
case where the central bank pegs the nominal interest raieeéregime and obeys the Taylor
principle in the other regime is similar to a model with a ZLBnetraint. Thus, we use their
regime switching setup as a benchmark for our algorithm. Miie adopt their models (linear
Fisherian economy, linear New Keynesian economy), ourdilgn produces convergence regions
that are identical to the determinacy regions they analjyiclerive. This means our algorithm is
non-convergent whenever the monetary policy parametersigside their analytical determinacy
region and convergent whenever the Long-run Taylor Priaéggmet. Our numerical solutions to
these models also equal the MSV solutions they derive. Meiscese does not constitute a formal
proof, but it does provide evidence that our algorithm cegguleterminate MSV solutions.

Our finding that there exists a tradeoff between the expdecteglency and average duration
of ZLB events is similar to the conclusion in Davig and Leeff&#07). They prove that when
there are distinct monetary policy regimes, the Taylor @ale does not need to hold in both
regimes to guarantee a unique bounded MSV solution. As lengna of the regimes satisfies
the Taylor principle, the central bank can passively redponinflation (i.e., adjust the nominal
interest rate less than one-for-one with inflation) in tHeeotregime and still deliver a determinate
solution. However, there are two key differences betweesetups. First, an occasionally binding
ZLB constraint truncates the current and future nominariedt rate distributions, which affects
the household’s expectations and their decision rulesor&kdahe parameters of the exogenous
driving processes affect convergence, since the linedvieesion of a nonlinear model with a ZLB
constraint misses key interaction terms between exogerariables and expected inflation.



To see how the parameters of the exogenous driving procetssrifta convergence, consider
the nonlinear analogue of the Fisherian economy Davig aeg&e(2007) study. A representative
household chooses:, b;};°, to maximizeE, >~ B, log ¢;, whereg; is consumptionﬁo =1,
andg, = H§:1 B; fort > 0. These choices are constraineddpy- by = y + i;_1b,_1/p, Wherey is
a constant endowmerit, is a one-period nominal bond, ; is the gross hominal interest rate set
by the central bank, and = p,/p;_; is the gross inflation rate. The fiscal authority does notassu
debt so bonds are in zero-net supply. The equilibrium sysderamposed of

L= B[ Be1 /7o), (1)
z’t_: g(wt/j’r)‘z’(st), (2
B = 5(@—1/5)% exp(vt), (3)

wherej; is the discount factor, which evolves according3pWith |ps| < 1 andv; ~ N(0, 02).

¢(s;) is the policy response to changes in inflation, which folla&state Markov chain with

transition matrixPr{s, = j|s,_1 =i} = p;;, i, 5 € {1,2}. A bar denotes a steady-state value.
A second-order approximation df)(around the deterministic steady state implies

it + (ie — Eylfea] + Er[Bra])? = Erliteea] — Ee[Brar] — (Bel(Fer — Bra)?] — (Belftees — Bea))®), ()

=0 (First Orde) =0 (First Order, Jensen’s Inequaljty

where a hat denotes log deviation from the steady-statesvallp to a first order, this equation
reduces to the standard log-linear Fisher equation, wiblen combined with3), reduces to

(s0)7 = By[Treqa] — Et[Bt+1]'

If the monetary policy regime is fixed(s;) = ¢), determinacy requires > 1 (Taylor principle).
If monetary policy is state-dependemnt §, = i) = ¢;), determinacy in the linear model requires

p11(1 — @) + paz(1 — ¢1) + P12 > 1. (Long-run Taylor Principle)

Neither of these conditions include the parameters of theodint factor process. This is a byprod-
uct of first-order approximations, which remove all intéi@e terms between the expected dis-
count factor and expected inflation. With a higher order apipnation, such as the second-order
approximation in 4), these interaction terms appear and affect convergendenWuctuations

in the discount factor are more persistent, it causes masgspent deviations of inflation from its
steady state, which shrinks the convergence region. Asambe figure 1shows the convergence
regions (shaded) for the state-dependent log-linear maotkethe nonlinear model withy = 0.85
andps = 0.95in (¢1, ¢o)-space. The convergence region is smaller in the nonlinear model and
decreases withg. However, changes t@; do not influence the convergence region since it only
affects the magnitude of the shock and not the householdsuwoption/saving decision.

In models with a ZLB constraint, both the persistence anaidsted deviation of the exogenous
driving processes affect the convergence region. It is Wwedwn that these models contain two
deterministic equilibria [Benhabib et al. (2001a,b)]. &feally, there are two nominal interest
rate/inflation rate pairs consistent with the steady-stqtelibrium system. In one case the central
bank meets its positive inflation target, while in the otluexflation occurs. Similar to the sunspot

2For the purposes of this exercise, wefix= 0.99, @ = 1.005, p11 = 0.8, p22 = 0.95, ando,, = 0.0005.
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Figure 1: Fisherian economy convergence (shaded) regidigs j - )-space. We s€ip11, p22) = (0.8,0.95).

shocks in Aruoba and Schorfheide (2013) and the confideraekshn Mertens and Ravn (2013),
exogenous switches in the monetary policy state that oecour model cause the economy to
switch between two states, but it doest necessarily imply that multiple MSV solutions exist
in a stochastic econontyAs long as there is a sufficient expectation of returning tocmetary
policy rule that obeys the Taylor principle, we show that aB\Wsolution exists. Our algorithm
does not converge to the deflationary equilibrium becauisenivt stable in expectation. That is,
in the deflationary equilibrium there is not enough pricébsity to reestablish that equilibrium
when sufficiently large shocks hit the economy, which is Emio points that Christiano and
Eichenbaum (2012) make about E-learnability. They contéatl when the model with a ZLB
constraint is restricted to the class of equilibria thatidlearnable, it has a unique solution.

To understand this point more clearly, suppose the econ@ginb in a state where the nom-
inal interest rate is stuck at its ZLB and inflation is negatiMn a deterministic environment,
households have dogmatic expectations, meaning that theyr expect to leave this state, and an
equilibrium exists. This fact is in sharp contrast with acsi@stic environment, where households
form expectations over the complete distribution of shotkeur exogenous and endogenous ZLB
setups, households place probability mass on both the mbmierest rate being positive and zero
in expectation, so that on average they always expect aymsabminal interest rate. Thus, the
deflationary state cannot be an equilibrium since the egpenbminal interest rate is never zero,
and the stochastic economy will always gravitate towardgtstive inflation equilibrium.

3 MODEL, BASELINE CALIBRATION, AND SOLUTION METHOD

At the ZLB, monetary policy cannot directly affect the raatiarest rate to stabilize inflation. With-
out price adjustment costs or sticky prices, such as in thledfian economy described above, no
region of the parameter space delivers a convergent soletien if ZLB events are infrequent. In
a new Keynesian model, nominal frictions anchor pricese#ihB so that a strong enough expec-
tation of leaving the ZLB produces a convergent solution.sheaw the convergence regions under

3Aruoba and Schorfheide (2013) discuss sunspot equilibnithese araotthe same sunspots Farmer et al. (2009,
2010) and Cho (2013) emphasize, since they omit the non-M@yponent from their solution.
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alternative parameterizations using a conventional Neynksian model with a ZLB constraint.

3.1 MoDEL A representative household choodes n, b;}:°, to maximize expected lifetime
utility, given by, By 320°, Bi{ci /(1 — o) — xn,7"/(1 + 1)}, wherel/q is the elasticity of in-
tertemporal substitutiorl,/» is the Frisch elast|C|ty of labor supply, is consumption of the final
good,n; is labor hours,@o =1, andﬁt = Hl . Bi fort > 0. B; is the subjective discount fac-
tor in periodi. These choices are constraineddpw b, + 7, = wny + 1101 /m + d;, Where
™ = pi/pe—1 IS the gross inflation ratey, is the real wage rate; is a lump-sum taxp, is a one-
period real bondy, is the gross nominal interest rate, afydare profits from intermediate firms.
The optimality conditions to the household’s problem imply

wy = xncy, (5)
L= rB{Begr(ce/cier)” /Tisa }- (6)

The production sector consists of a continuum of monopoc#ily competitive intermediate
goods firms and a perfectly competitive final goods firm. Eaeh fi € [0, 1] in the intermedi-
ate goods sector produces a differentiated ggod), according toy,(i) = a;n.(7), wherea; is
technology and:,(7) is the level of employment used by firin The final goods firm purchases
y;(7) units from each intermediate firm to produce the final gapds | f y, (1) 0170 q4)0/(60=1),
according to a Dixit and Stiglitz (1977) aggregator, whére- 1 is the prlce elasticity of de-
mand between intermediate goods. Proflt maximization giéhe demand function for goad
yi(i) = (p:(i)/ps) "%y, Wherep, = f pi(1)'=%di]*/1=9 is the final good price. Each interme-
diate firm chooses its price level, (i), to maX|m|ze the expected present value of real profits,
E> o aendi(t), wheregy = 1, i1 = Brea(ci/cr)? is the pricing kernel between periods
tandt + 1, andq,, = Hf:m ¢;—1,;. Following Rotemberg (1982), each firm faces a cost to
adjusting its price, which emphasizes the potentially tieg@ffect that price changes can have on
customer-firm relationships. Using the functional formreldnd (1997), firmi’s real profits are

o[22 52

wherey > 0 determines the size of the adjustment castg, is the real marginal cost of produc-
ing a unit of output, and is the steady-state gross inflation rate. In a symmetriclieguim, all
intermediate goods firms make the same decisions and thaali condition reduces to

o (2 -1) 2= (1-6)+6(wi/a) + oE; [q (7= -1) ”y—} (7)

T T Y

In the absence of price adjustment costs (ie5 0), the real marginal cost equalgé — 1)/6,
which is the inverse of the firm’s markup of price over mardjoust.

Each period the fiscal authority finances its spendindy Ievying lump-sum taxes{ = g).
The resource constraint is + § = [1 — o(m/7 — 1)%/2]y, = yi¥, wherey!” includes the
value added by intermediate firms, which is their output rslqluadratlc price adjustment costs. A
competitive equilibrium consists of sequences of quas{ti;, n:, b;, y: } 12, Prices{wy, r, m}%,,
and exogenous variablds;, a,}:°, that satisfy the household’s and firm’s optimality condito
[(5),(6),(7)], the production functiony; = a;n;, the monetary policy rule (defined below), the
stochastic processes (defined below), bond market cleafing0, and the resource constraint.
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3.2 CALIBRATION We calibrate the model at a quarterly frequency using vatugsare com-
mon in the literature. We seét = 0.99 ando = 1, implying log utility in consumption. The Frisch
elasticity of labor supplyl /7, is set tol and the leisure preference paramejgrjs set so that
steady-state labor equalg3 of the available time. The price elasticity of demand betwieer-
mediate goodd), is set to6, which corresponds to an average markup of price over margost
equal to20 percent. The costly price adjustment parametgeis set t058.25, which is similar to a
Calvo (1983) price-setting specification where prices geamn average once every four quarters
(w = 0.75).* Steady-state technology, is normalized ta.. In the policy sector, the steady-state
gross inflation rater, is set tol .005, which implies an annual (net) inflation rate targe? plercent.
The steady-state ratio of government spending to outplilsrated ta20 percent.

3.3 SOLUTION METHOD AND DEFINITION OF CONVERGENCE We solve the fully nonlinear
model using the policy function iteration algorithm debed in Richter et al. (2013), which is a
numerical byproduct of using monotone operators to proig&xce and uniqueness of equilibtia.
This solution method discretizes the state space and usestiration to solve for the updated
decision rules until the tolerance criterion is met. To actdor the ZLB in the endogenous setup,
we set the gross nominal interest rate equalda any node in the state space where the Taylor rule
implies a value less than one. We obtain initial conjectdioeshe constrained nonlinear model
using the solution to the log-linear model without the ZLBoiosed. We find that this guess is very
reliable and no evidence it affects convergence. For examyien we solve for the boundary of
the convergence region using this guess for each paramsdten, it produces the same boundary
as when we use the nonlinear solution to a model with a sirpdsameterization as our guess.

We classify the algorithm ason-convergentvhenever the iteration step, defined as the maxi-
mum distance between decision rule values on successig#adtes, increases at an increasing rate
for more thanl 00 iterations or when all of the values in any decision rule ¢stestly drift (e.g.,
negative consumption on any node or more th@percent deflation on every node). Additionally,
when ZLB events are endogenous, we require that the ZLB lmndewer tharb0 percent of the
nodes in the state space. We have observed that the pereaitagdes where the ZLB binds
converges td00 percent, whenever more than 50 percent of the nodes binditaration. At that
point, the inflation policy function converges to zero atraldes in the state space, which is not
a valid solution. We classify the algorithm esnvergenwwhenever the iteration step is less than
1-13 (the tolerance criterion) for0 successive iterations, which prevents the algorithm from i
mediately converging when the tolerance criterion is first.ro provide evidence that each MSV
solution is locally unique, we randomly perturb the coneergecision rules in multiple directions
and check that the algorithm converges back to the samdm@ufuTo ensure that the solution is

4If w represents the fraction of firms that cannot adjust pricels pariod, therp = w(6—1)/[(1-w)(1—Bw)]ina
linear model with a zero-inflation steady state, which pdegia reasonable estimate of the adjustment cost parameter.

5Coleman (1991) proves existence and uniqueness of antaguitiin a nonlinear stochastic production economy
with an income tax. Greenwood and Huffman (1995) adapt tliefio a more general neoclassical model, including
one with monopolistic competition. Coleman (1997) gerieealthese proofs to allow for an endogenous labor supply
and Datta et al. (2005, 2002); Mirman et al. (2008) extendmtbo more complex setups. The monotone mapping
results in these papers are attractive because they setive theoretical foundations of our numerical algorithm.

6Cochrane (2011) argues that the existence of explosivéiorlpaths in a New Keynesian model permit a bounded
solution. Our numerical solution method cannot capturdasiye paths, which are not observed in the data. We focus
on conventional bounded equilibria. Braun et al. (2012) diesirate that there are multiple equilibria fmmesettings
of parameters and shocks. For example, a second equilitiists if a shock to the discount factor is greater than



bounded, we simulate the model and check that it convergasstochastic steady state. For a
more formal description of the numerical algorithm and @gence, see appendix

4 EXOGENOUSZLB EVENTS: MONETARY POLICY SWITCHING

In this section, the central bank sets the gross nominalsteate according to

_ {fm/ﬁwwyfdf‘/yf)% for s =1

Ty = ) (8)
1 for s, =2

where¢, and ¢, are the policy responses to inflation and the adjusted ogimpit The mone-
tary policy stateg,, evolves according to 2state Markov chain with transition matrixe{s;, =
Jlsi-1 =i} = pi;, fori, j € {1,2}. Whens; = 1, the central bank obeys the Taylor principle and
whens; = 2, the central bank exogenously pegs the gross nominal sitexee atl. We setu; = a
andpB, = /3. Thus, all ZLB events in this section are due to exogenousgdsins;,.

The exogenous switches between the two monetary policgsstate similar to large discre-
tionary shocks. When the nominal interest rate switchas Btate 1 to state 2 (state 2 to state 1),
the nominal interest rate falls (rises) sharply. This mehas expectations about the future state
play a key role in determining inflation. To understand hoflaiion changes when ZLB events
are exogenous, assume the state is fixed, but there is a gitybalchanges. Whens;, = 1 and
p11 < 1, the household expects a lower future nominal interest veltech increases expected fu-
ture consumption growth and drives up inflation. Wheg- 2, the household expects to leave the
ZLB and the future nominal interest rate to rise. This reduogected future consumption growth,
which would normally reduce inflation, but since the nomiraeé is stuck at, inflation rises to
clear the bond market. Thus, the possibility of ZLB eventseases inflation in both states.

Figure 2aplots the convergence (shaded) regionépin, ps»)-space forp, € {1.3,1.5,1.7}.

To isolate the impact o on the convergence region, we initially ggt= 0. The boundary of the
shaded region for each). represents the largest, value that yields a convergent solution for each
p11 value. These results show a clear tradeoff betweeandp,,. When there is a low probability
of going to the ZLB (i.e., a higlp,; value), it is possible to have a high probability of stayitg a
the ZLB (i.e., a highpy; value) and still guarantee a convergent solution. This ssiggthat there
is a tradeoff between the expected frequency and averaggatuof ZLB events. To see this more
clearly, figure 2bplots the probability of going to the ZLB (i.ep;2) as a function of the average
duration of each ZLB event (i.el,/ps;) for each value ob,.. When the average duration of ZLB
events is short, the convergence region permits a high eegpequency of ZLB events. However,
as the average duration of ZLB events increases, the maxiexpected frequency of ZLB events
must decrease to avoid the non-convergence (non-shadgol) & the parameter space.

These results show that this model does not generateageZLB events that are consis-
tent with observed ZLB events, which is similar to the poimtade in Chung et al. (2012) and
Fernandez-Villaverde et al. (2012); however, it is poesibr longer ZLB events to occur and still
deliver a convergent solution, because the householdpléite weight on these outcomes in their
expectations. For example, whepn = 1.5, p;; = 0.95, andps, = 0.5, the average ZLB event is
only 2 quarters, but the maximum ZLB event ir5@0,000 quarter simulation i35 quarters, which

7.31 percent. Given the parameters we adopt, a change in theudisiaxtor of everi.5 percent is very unlikely.
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Figure 2: Convergence regions across alternative monptdigy responses to inflatiopf ).

is closer to ZLB events observed in the data. Furthermorst &uwal. (2013) argue that this average
duration is consistent with the expectations found in fimgnmoarket and survey data.

The convergence region also depends on how strongly theatéaink responds to inflation
when the ZLB does not bind. The darker shaded regions reqtrése additional area of the pa-
rameter space that delivers a convergent solution wheimcreases. If the monetary authority
responds more aggressively to inflation when= 1 (i.e., a highery,) andp;; < 1, the con-
vergence region widens, since greater price stability whes 1 helps offset the destabilizing
influence ofs; = 2. This means the convergence region permits longer and/ce frequent trips
to the ZLB. However, it is interesting that regardless ofthkie of¢,, the longest average ZLB
eventinside the convergence region is the salmequarters). A rises, the expected frequency
of ZLB events declines. This implies that= 2 has a decreasing effect en= 1 and the stabiliz-
ing effect of additional price stability is, = 1 has a smaller effect on overall price stability. Thus,
the additional area of the parameter space that delivekeogpence shrinks as; increases. When
p11 = 1, any ZLB event is completely unexpected by the households mieans that;, = 2 has
no effect on the decision rules i = 1 and increases in,, do not widen the convergence region.
In short, ag;; — 1, the model approaches a fixed-regime setup where increagsesieyond a
minimum threshold have no effect on the convergence regidina parameter space.

When the central bank responds to the adjusted outputgap- (0), it also affects the con-
vergence regionkigure 3plots these regions faf, € {0,0.1,0.2}. Since the real interest rate is
higher in state 1, adjusted output is below its steady stdigh corresponds to a negative output
gap (i.e.,yfdj/gj < 0). Thus, a largeo, reduces the nominal interest rate in state 1 for a gign
because the countercyclical monetary policy offsets platth@ response to changes in inflation.
With less price stability in state 1, the convergence regimmnks. Thus, higher values of, have
a qualitatively similar effect on the convergence regiotoagr values ofp, when ZLB events are
exogenous. Once again, the differences between thesergence regions shrink as,; increases.

In general, a larger response by the central bank to incseagsousehold demand provides
additional price stability in state 1. However, it is deglialng in state 2, because the household
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Figure 3: Convergence regions across alternative monptdicy responses to the adjusted output gap (

expects a relatively higher future nominal interest ratiicW increases inflation at the ZLB. The
strengths of these two competing effects change along tie efcthe convergence region. When
p11 IS not too high, state 2 has a larger effect on state 1. Thisisntree maximum value Qfy;

and the average duration of ZLB events is low. Thus, the l&taiy effect of state 1 dominates
and the convergence region expands.pAsincreases, the effect of state 2 on state 1 declines and
the convergence region expands less. At high values,pfvhich permit high values gf,,, it is
possible that the destabilizing effect of state 2 dominateksfor the convergence region to shrink.
This is what happens with large valuesdgf’ Regardless, whem; = 1, state 2 has no effect on
state 1 and the monetary policy parameters have no impabeoronvergence region.

A common theme in the convergence regions shown above iptitat stability plays a key
role. In addition to the monetary policy parameters, therele@f price stickiness also heavily
influences price stabilityFigure 4shows the convergence regions forc {0.67,0.75}. With a
lower degree of price stickiness (i.e., a lowgy firms have a greater ability to adjust prices with
the monetary policy state. When the average duration of Alé®its is high (i.e., a highy,), lower
price stickiness shrinks the convergence region, becaymexted prices are less anchored by the
Taylor rule in state 1. For example ufdeclines from).75 to 0.67, the maximum average duration
of ZLB events declines from.3 quarters tol.85 quarters. Asp;; and ps, fall, the household
expects to visit the ZLB more often but for fewer quarters verage. This means the benefit of
additional price stability declines and the convergengeres shrink. Notice that the convergence
regions twist. While the convergence region generallynidsrior lower values of, at low enough
values ofp;; the region expands. This is because itis less costly for tioragjust prices consistent
with state 2 when the expected duration of staying in stasev2iy short.

The other deep parameters in the model (exgy, ) also affect the size of the convergence
region. When the degree of risk aversienjs higher, the household is less willing to intertempo-
rally substitute consumption goods. When the Frisch elgf labor supply,1 /7, is larger, the

’Barthélemy and Marx (2013) find that a strong response tatiofi shrinks the determinacy region in a linear
model with a Markov-switching monetary policy rule. Theuiition for their result is similar to what we describe.
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Figure 4: Convergence regions across alternative degfgere stickinessdy).

household’s willingness to supply labor is more sensitivelianges in the real wage rate. Both
of these effects make hours worked, consumption, and thatioril rate less volatile when the
ZLB binds, which expands the convergence region. When thisdimld is more patient (i.e., a
higher 3), the steady state nominal interest rate is lower, whicluced the demand-side effects
of switching states. This makes inflation less volatile alstd &xpands the convergence region.
Many models also include a smoothing component in the monptdicy rule. An increase in this
parameter shrinks the convergence region because it rethueeesponse to the fundamentals.

5 ENDOGENOUSZLB EVENTS: EXOGENOUSSHOCKS

This section replaces the exogenous Markov-switchingge®agiven in&), with either an AR(1)
technology or discount factor process that determinesxpecated frequency and average duration
of ZLB events. We study these two shocks because they aredbeanmmon shocks used in the
ZLB literature® The central bank sets the gross nominal interest rate dogoial

ry = max{1,7(m, /%)’ }. 9

Unlike Eggertsson and Woodford (2003) and others, we clmsséd a continuous processes for
technology or the discount factor rather than a two-statekMachain for two main reasons.
First, the results are more relevant to researchers ingéel@s estimating ZLB models, since most
estimation specifies continuous processes. Second, etleawvo-state Markov chain, it would
be difficult to compare the results from the exogenous andgembus setups. For example, with
a two-state Markov chain on the discount factor, the jumpessary to make the ZLB bind is a
function of the transition matrix. Thus, it is not possibdefix a 5 in state 2 that ensures the ZLB
binds over the entire convergence regiomnin (p22)-space. In other words, thein state 2 would
sometimes be too low to make the ZLB bind and sometimes tdwo, gich affects convergence.
Thus, S in state 2 would need to change over the (p2;)-space. However, that change make it
difficult to directly compare the results to the results frtita exogenous setup.

8For a complete picture of the solution to New Keynesian medéth and without capital see Gavin et al. (2014).
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Section 4makes clear that when episodes at the ZLB are exogenousothredary of the
convergence region imposes a tradeoff between the exp&etpaency and average duration of
ZLB events. This same tradeoff exists when ZLB events aregeaous. We discretize the state,
z_1 (either technologyg;_1, or the discount factorj;_;), into N elements such that,_; €
{21, ..., 2N}, Lets, € {1,2} indicate that the ZLB is either not binding or binding, restpeely.
Given the MSV solution to the model under a particular patanation, letn denote the index
corresponding to the minimum value of the state variableresttee ZLB binds, which partitions the
state-space into two subsets. Denote the correspondingfsedices ag, ;1 = {1,...,n — 1}
andZ;—; = {n,..., N}. The probability of going to the ZLB (the analog@f, = 1 — p;; in the
transition matrix defined isection 4 is given by

Dierr,, Pr{se = 2|z = 2} ¢(2| 7, 02)

Pr{s; =2|s;_1 =1} = 5 S(17.00) :
1€T11,4—1 Pt

where

Pris, = 2]z, zi} _ Z]efj,t(z) ®(g510, 0¢) _ 12 Z (£;]0, 0.), (10)
Zj:l ¢(6j|0’ Ua) €T, (1)

ando(x|u, o) is the normal probability density function, given meamand standard deviation

For each;_q, there is a vector of realizations af where each realization corresponds to a Gauss-

Hermite quadrature node;, j € {1,..., M} (the roots of the Hermite polynomial)f, . (i) is the

set of indices where the ZLB continues to bind given the tetdgy statez,_; = 2*.

5.1 TECHNOLOGY SHOCKS In this section, technology evolves according to
a; = a(a—1/a)" exp(ey), (11)

where0 < p, < 1 ande; ~ N(0, 02). The discount factor is constant; (= /3 for all t). We define

o, = 0./(1 — p2)'/? as the standard deviation dfi). Positive technology shocks act as positive
aggregate supply shocks. At high technology levels, firres’ymit marginal cost of production is
low. Firms react by lowering their prices and raising thewduction. This causes deflation and,
given a sufficiently high level of technology, the (net) noaliinterest rate falls to zero according
to the Taylor rule in®). Thus, ZLB events are endogenous due to technology shocks.

Figure 5aplots (10) as a function of the technology state for three alternggarameterizations
of (11). The shaded region corresponds to technology states whiei@ B binds, which begins
when technology iS.5 percent above its steady state. The three combinatiorig,0f.) are
chosen to keep the boundary of the ZLB region fixed. In teabmoktates below the boundary,
the probability on the vertical axis is the probability ofigg to the ZLB in the next quarter.
In technology states above the boundary, it is the proliglmfi staying at the ZLB. This figure
demonstrates the tradeoff between the probability ofrfytthe ZLB and the average duration of
ZLB events. Asp, increases and. decreases, it is less likely the ZLB will bind in technology
states below the boundary and more likely the ZLB will conéno bind once the ZLB is hit.

The combinations ofp,, o.) shown infigure 5aarenot on the boundary of the convergence
region in(p,, o.)-space. The boundary of the ZLB region is a functior{f, o.), which affects
the probabilities of going to and staying at the ZLB. SincdBAvents are endogenous duela)(
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Figure 5: Properties of the model where ZLB events arise geously due to technology shocks.

there is no way to mafy,, o.) into equivalentp,, ps») values and generate a picture equivalent
to figure 2(i.e., we cannot increage, by changindp,, o.) without alteringp,;). Thus, fixing the
boundary of the ZLB region offers the closest comparisohédWlarkov chain process section 4
Figure 5bshows that along the boundary of the convergence regiomé¢shathere is a clear
tradeoff between the persistence of the technology proggsand the standard deviation of the
shock,o.. As the persistence of the process increases, the stane@atidn of the shock must
decline to avoid a non-convergence region. This tradedi#fcts thatp, ando. both impact the
expected frequency and average duration of ZLB event$igase 5ashows. Once again, the
monetary policy response to inflation,, affects the size of the convergence region. For a given
Pa, @Nincrease i, permits a largewr,, as prices are more stable when the ZLB does not bind.
The fact that the parameters of the stochastic process tnipaconvergence region is sig-
nificant, because these parameters do not affect convergenimearized models, regardless of
whether the ZLB is imposed. In models that impose a ZLB, itasnmon to linearize every
equation in the equilibrium system, except for the Taylde rand assume ZLB events last for a
predetermined duration with no probability of recurrenthis approach does not account for the
expectational effects of going to and exiting the ZLB, whaek critical for convergence.
Figure 6compares the inflation rate decision rules across two padeaizations of {1), both
of which are on the boundary of the convergence regidipine. )-space. The horizontal dashed
line is the steady-state inflation rate & 1.005). When the technology state equals the steady-
state technology levela( = 1), the deviations of the inflation rate from its steady-stetie
provide a measure of the expectational effect of hittingZh&. The shaded region represents
values of the inflation rate where the ZLB binds. Whenis relatively small (dashed line), the
expectational effect is small because the likelihood dfrigtthe ZLB in expectation is also small.
As o, increases, and, increases with it, the expectational effect of hitting thd8zalso increases.
When the ZLB binds, higher real interest rates reduce copiomand put downward pressure
on inflation as firms respond to the lower demand. Thus, whenetis a higher probability of going
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to the ZLB (solid line), the slope of the inflation rate polfeyiction is steeper. Since the downward
pressure on inflation happens across the entire state spatsg influences where the ZLB first
binds in the state space. For smaller standard deviatiofisdpfthe probability of hitting the ZLB

in expectation is smaller and the boundary of the ZLB regien &t a higher technology state.
Unlike log-linearized models, where the calibration of gtechastic process has a much smaller
effect on the decision rules, these results imply that chang the calibration of the stochastic
process can significantly impact the quantitative propsmif the model.

5.2 DISCOUNT FACTOR SHOCKS In this section, the discount factor evolves according to

B = B(ﬁt—l/ﬁ_)pﬁ exp(vt), (12)

where0 < pz < 1 andv; ~ N(0,02). Technology is constantf = a for all t). We define
os = 0,/(1 — p3)"/? as the standard deviation af2). Positive discount factor shocks act as
negative aggregate demand shocks. A high discount factansnthat the household is more
patient and elects increase leisure and to defer consumiatituture periods. Firms respond to
the lower demand by cutting output and reducing their priddss causes deflation and, given a
sufficiently high discount factor, the (net) nominal intgreate falls to zero according to the Taylor
rule in (9). Thus, ZLB events are endogenous due to discount factaksho

Figure 7areproducedigure 5for three alternative parameterizations of the discouatofa
process given inl2). The shaded region corresponds to discount factor stdtesewthe ZLB
binds, which begins when the discount factofi8 percent above its steady-state value. Once
again, there is a clear tradeoff between the expected fregund average duration of ZLB events.

Figure 7bshows the convergence regionsgjny, o, )-space. For a given persistence value, the
discount factor process permits a much smaller shock sarettie technology process. This is be-
cause the discount factor directly affects the househaldlsgness to intertemporally substitute,
which is critical for convergence since it affects expedtdlhtion. As an example, the maximum
shock size is only).0003 whenps = 0.95. This is significant because estimates of this parameter
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Figure 7: Properties of the model where ZLB events arise gadously due to discount factor shocks.

using a log-linear model without a ZLB constraint are outsad this region. The data prefers
highly persistent shocks (i.eps > 0.95) with a standard deviation that is over four times the
maximum value inside the convergence region. While the meddightly different, the estimates
of the constrained nonlinear model in Gust et al. (2013) e well outside of the convergence
region. They estimate that = 0.88 ando,, = 0.0025, which may be possible in our model with
a persistent Taylor rule or more price stickiness. The data@efers highly persistent technology
shocks, but it does not pose as serious a problem for estmbé&cause the constrained model
permits large shocks. When = 0.95 and¢,, = 1.5, the maximum shock size (575 percent.
Figure 8plots the decision rules for inflation. The slope is steeperé negative) when the
discount factor is more persistent. In discount factorestathere the ZLB does (does not) bind,
inflation is lower (higher). At the ZLB, higher persistenceans the household expects relatively
higher consumption growth. Since the nominal interestdatss not respond to inflation, the only
way for the real interest rate to rise and for the bond maiketear is if inflation falls sharply.
The expectational effect of the ZLB in discount factor statmdere the ZLB does not bind also
drives down inflation. In states further from ZLB region, theectational effect is weaker and the
higher demand associated with a lower, more persistenvualigdactor increases inflation. Once
again, these results show that even small changes in thenpsmazation of the exogenous driving
process significantly affect the decision rules, and helnegtiantitative properties of the model.

6 CONCLUSION

This paper demonstrates that the boundary of the convezgegion imposes a clear tradeoff
between the expected frequency and average duration ofdgsisit the ZLB, regardless of whether
ZLB events arise exogenously or endogenously. This trédkeofitical for at least three reasons.
First, even though the Taylor principle does not hold at th& 4t shows that central banks can
still pin down prices when the nominal interest rate is peggeits ZLB, so long as households
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have a strong enough expectation of returning to a regimeemMie central bank aggressively
responds to inflation. Second, it imposes an important camston the parameter space that the
econometrician must account for when estimating the fuipwlimear model. Third, it implies
that small changes in the parameters of stochastic praceiggeficantly impact the decision rules
and the state at which the ZLB first binds. This means acdyrasdibrating or estimating the
parameters of the exogenous driving processes is parlicuigportant for analysis at the ZLB.
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A NUMERICAL ALGORITHM

A formal description of the numerical algorithm begins bytimg the model compactly as

]E[f(vt—l—lv Wit1, Vi, Wt)|Qt] - 07

wheref is vector-valued function that contains the equilibriursteyn,v is a vector of exogenous
variables,w is a vector of endogenous variables, and= {M, P, z,} is the household’s infor-
mation set in period, which contains the structural modél/, its parametersP’, and the state
vector,z. In the model where ZLB events are exogenouss z = (s). When ZLB events are
endogenous due to technology shoeks (a, ) andz = a and when ZLB events are endogenous
due to discount factor shocks= (5, v) andz = . In all modelsw = (¢, 7, y,n, w, 7).

Policy function iteration approximates the vector of dexigules,®, as a function of the state
vector,z. The time-invariant decision rules for the exogenous madel

A

D(z;) =~ DP(zy)
—— ——

True RE Solution  Approximating
Function

We choose to iterate oft = (¢, 7) so that we can easily solve for future variables that enter
the household’s expectations usifig Each continuous state variabledris discretized intaV¢
points, whered € {1,..., D} and D is the dimension of the state space. The discretized state
space is represented by a set of unigeelimensional coordinates (nodes). In general, we set
the bounds of continuous stochastic state variables tonepas9.999 percent of the probability
mass of the distribution. We specity01 grid points for each continuous state variable and use
the maximum number of Gauss-Hermite nod&s or each continuous shock. These techniques
minimize extrapolation and ensure that the location of ih& kn the decision rules is accurate.

The following outline summarizes the policy function aliglom we employ. Let € {0,...,}
index the iterations of the algorithm ande {1,... 11, N} index the nodes.

1. Obtain initial conjectures for the approximating funcis,c, andr,, on each node, from the
log-linear model without the ZLB imposed. We ugensys. mto obtain these conjectures.

2. Fori € {1, ..., 1}, implement the following steps:

(a) On each node, solve féy;, r;, n:, w; } givené;_,(z}) and;_(z}) with the ZLB im-
posed.

(b) In the endogenous model, linearly interpoléte ,, 7.1} given{e}: }»_ . Each of
the M values:}} | are Gauss-Hermite quadrature nodes. We use Gauss-Heuadteg
ture to numerically integrate, since it is very accuraterformally distributed shocks.
We use piecewise linear interpolation to approximate futtariables that show up in
expectation, since this approach more accurately capttoedsnk in the decision rules
than continuous functions such as cubic splines or Chebystignomials’

9Aruoba and Schorfheide (2013) use a linear combination of ®liebyshev polynominals—one that captures
the dynamics when the ZLB binds and one that captures thentigeavhen the Taylor principle holds. While this
approach is more accurate than using one Chebyshev polghdh@re is no guarantee that it will accurately locate
the kink. Moreover, Chebyshev polynomials can lead to |laggeroximation errors due to extrapolation. With linear
interpolation, a dense state space will lead to more pralietextrapolation and more accurately locate the kink
[Richter et al. (2013)].
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(c) We use the nonlinear solvarsol ve. m to minimize the Euler equation errors. On
each node, numerically integrate to approximate the eatieatoperators,

E [f(xf,, %)) ~ f Z P f(xE L x), (Exogenous ZLB Model)

E [f(x,x)[0] ~ Z FED XM (Em), (Endogenous ZLB Model)

wherex = (v, w), pjrx = Pr(si+1 = k|s} = j), andg¢ are the respective Gauss-Hermite
weights. The superscripts onindicate which realizations of the state variables are
used to compute expectations. The nonlinear solver seafohé (z;) and;(z}") so
that the Euler equation errors are less thahon each node.

3. Definemaxdist; = max{|¢; — ¢;_1|, |7; — 7;_1|}. Repeat the steps item 2until one of the
following conditions is satisfied.

e Ifforall n, maxdist; < 1713 for 10 consecutive iterations, then the algorithm converged
to a bounded MSYV solution. Since the state is composed ofexdgenous variables,
the solution is bounded so long as the decisions rules aréveasnd finite.

e Otherwise, we say the algorithm is non-convergent for ortb®following reasons:
— ¢ =1 = 500,000 (Algorithm times out)
— For alln and anyi, 7; < .5, or for anyn, ¢; < 0 (Approximating functions drift)

— Definedir; = maxdist; — maxdist,_;. For alln, dir; > 0 anddir; — dir;_; > 0
for 100 consecutive iterations (Algorithm diverges)

To provide evidence that each MSV solution is locally unique randomly perturb the con-
verged decision rules and check that the algorithm congdrgek to the same solution.
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