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Abstract

We evaluate the usefulness of bias-correction methods for autoregressive (AR) models in

terms of out-of-sample forecast accuracy, employing two popular methods proposed by Hansen

(1999) and So and Shin (1999). Our Monte Carlo simulations show that these methods do

not necessarily achieve better forecasting performances than the bias-uncorrected Least Squares

(LS) method, because bias correction tends to increase the variance of the estimator. There is a

gain from correcting for bias only when the true data generating process is sufficiently persistent.

Though the bias arises in finite samples, the sample size (N) is not a crucial factor of the gains

from bias-correction, because both the bias and the variance tend to decrease as N goes up. We

also provide a real data application with 7 commodity price indices which confirms our findings.
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1 Introduction

It is a well-known statistical fact that the least squares (LS) estimator for autoregressive (AR)

processes suffers from serious downward bias in the persistence coefficient when the stochastic

process includes a non-zero intercept and/or deterministic time trend. The bias can be substantial

especially when the stochastic process is highly persistent (Andrews, 1993).

Since the seminal work of Kendall (1954), an array of bias-correction methods has been put for-

ward. To name a few, Andrews (1993) proposed a method to obtain the exactly median-unbiased

estimator for an AR(1) process with Gaussian errors.1 Andrews and Chen (1994) extends the

work of Andrews (1993) to get approximately median-unbiased estimator for higher order AR(p)

processes. Hansen (1999) developed the grid bootstrap (GB) method, a nonparametric bias correc-

tion method, which is robust to distributional assumptions. These median-bias correction methods

have been widely employed by many researchers, among others, Kim and Ogaki (2009), Kim (2009),

Steinsson (2008), Karanasos et al. (2006), and Murray and Papell (2002).

An alternative approach has been also proposed by So and Shin (1999) who develop the recur-

sive mean adjustment (RMA) method that belongs to a class of (approximately) mean-unbiased

estimators.2 The RMA estimator is computationally convenient to implement yet powerful and

used in the work of Choi et al. (2009), Kim et al. (2009), Sul et al. (2005), Taylor (2002), and

Cook (2002), for instance.

By construction, the LS estimator provides the best in-sample fit among the class of linear

estimators notwithstanding its bias, because the LS estimator is obtained by minimizing the sum of

squared residuals. Of course, this does not guarantee good out-of-sample forecasting performances.

It is not clear either whether correcting for bias will enhance forecasting performances. Even

though bias-correction reduces the mean square error (MSE), it tends to increase the variance of

the estimator at the same time, resulting in an increase in MSE. If the bias is not large enough to

1Mikusheva (2007) shows that Andrews’ (1993) method is asymptotically valid for non-Gaussian errors.
2Tanaka (1984) and Shaman and Stine (1988) extend Kendall’s (1954) exact mean-bias correction method to

AR(p) models. However, their methods are computationally complicated when the lag order is large. Further, one
may need to derive the bias-correction formula for higher-order processes than AR(6), because Shaman and Stine
provide formulae for up to AR(6).
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compensate for increased variance, there will be no gains from bias-correction.

A natural question then arises: when do we need to correct for the bias to achieve better

out-of-sample forecasting performances? We attempt to answer to this question via Monte Carlo

simulation analysis for an array of AR processes. Our analysis shows that bias-correction indeed

increases variances of both the GB and the RMA methods (more substantially for the GB method).

We find substantial gains from correcting for bias when the true data generating process is very

persistent, and/or when the forecast-horizon is fairly short. Though the bias arises in finite samples,

the number of observations (N) itself is not a crucial factor, because increases in N tend to reduce

both the bias and the variance.

As a real data application, we employ the GB and the RMA approaches along with the LS

estimator to out-of-sample forecast quarterly commodity price indices for the period of 1974.Q1 to

2008.Q3, obtained from the Commodity Research Bureau (CRB). We find that both bias correction

methods overall outperform the LS estimator with an exception of the Textile CRB index that

exhibits fairly low persistence. These findings are consistent with our Monte Carlo simulation

results.

Organization of the paper is as follows. In Section 2, we explain the source of bias and how each

method corrects for the bias. Section 3 reports our simulation results. In Section 4, we discuss our

major empirical findings from our real data experiments. Section 4 concludes.

2 Bias-Correction Methods

Consider the following AR(1) process with an intercept.

yt = c+ ρyt−1 + εt, (1)

where |ρ| < 1 and εt is a white noise process. The Frisch-Waugh-Lovell theorem implies that

estimating ρ by the LS estimator is equivalent to estimating the following.

(yt − ȳ) = ρ (yt−1 − ȳ) + εt, (2)
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where ȳ = T−1
PT

j=1 yj . The LS estimator for ρ, however, is biased because εt is correlated with the

explanatory variable (yt−1 − ȳ).3 Therefore, the LS estimator for AR processes with an intercept

creates the mean-bias. The bias has an analytical representation, and as Kendall (1954) shows, the

LS estimator ρ̂LS is biased downward.
4

There is no analytical representation of the median-bias. Monte Carlo simulations, however,

can easily demonstrate that the LS estimator produces significant median-bias for ρ when ρ gets

close to unity (see Hansen, 1999).

When εt is serially correlated, it is convenient to express (1) as follows.

yt = c+ ρyt−1 +
kX

j=1

βj∆yt−j + ut, (3)

where ut is a white noise process that generates εt.5

For Hansen’s (1999) grid bootstrap (GB) method, we define the following grid-t statistic.

tN (ρi) =
ρ̂LS − ρi
se(ρ̂LS)

,

where ρ̂LS is the LS point estimate for ρ, se(ρ̂LS) denotes the corresponding LS standard error,

and ρi is one of M fine grid points in the neighborhood of ρ̂LS. Implementing LS estimations

for B bootstrap samples at each of M grid points, we obtain the α% quantile function estimates,

q̂∗N,α(ρi) = q̂∗N,α(ρi, ϕ(ρj)), where ϕ denotes nuisance parameters such as βs that are functions of

ρi. After smoothing quantile function estimates, the (approximately) median-unbiased estimate is

obtained by,

ρ̂G = ρi ∈ R, s.t. tN(ρi) = q̃∗N,50%(ρi),

where q̃∗N,50%(ρi) is the smoothed 50% quantile function estimates obtained from q̂∗N,α.
6 To correct

3Put differently, εt is correlated with yj , for j = t, t+ 1, · · · , T , thus with ȳ.
4This may not be true for higher order AR(p) processes with low persistence. See Stine and Shaman (1989).
5When the stochastic process is of higher order than AR(1), exact bias-correction is not possible because the bias

becomes random due to the existence of nuisance parameters. For higher order AR(p) models, the RMA and the GB
methods yield approximately mean- and median-unbiased estimators, respectively.

6We use the Epanechinikov kernel K(u) = 3(1− u2)/4I(|u| ≤ 1), where I(·) is an indicator function.
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for median-bias in βj estimates, we treat other βs as well as ρ as nuisance parameters and follow

the procedures described above.

So and Shin’s (1999) recursive mean adjustment (RMA) method utilizes demeaning variables

using the partial mean instead of the global mean ȳ. Rather than implementing the LS for (2), the

RMA estimator is obtained by the LS estimator for the following regression equation.

(yt − ȳt−1) = ρ (yt−1 − ȳt−1) + ηt,

where ȳt−1 = (t − 1)−1
Pt−1

j=1 yj and ηt = εt + c − (1 − ρ)ȳt−1. Note that εt is orthogonal to the

recursive mean adjusted regressor (yt−1 − ȳt−1), which results in a substantial bias reduction for

the RMA estimator

ρ̂R =

PT
t=2 (yt−1 − ȳt−1) (yt − ȳt−1)PT

t=2 (yt−1 − ȳt−1)
2

(4)

For a higher order AR process such as (3), the RMA estimator can be similarly obtained as in

Hansen’s (1999) GB method.

3 Monte Carlo Simulations

We first consider AR(1) models. Our simulation analysis uses fine grid points for ρ ∈ [0.100, 1.025]

and an array of sample sizes, N ∈ {50, 75, 100, 125, 150, 200, 300, 400, 500} with 5, 000 iterations

for each pair (ρ,N). The data generating process is specified as yt = ρyt−1 + εt with εt being

independently distributed Gaussian innovations. We set the constant term to zero, because the

distribution of ρ does not depend on the intercept term (Andrews, 1993). Each replication generates

2N observations with the initial value y0 = 0, then discards the first N observations to minimize

initialization effects. We report only a subset of our full results to save space.7

Figure 1 reports the estimated mean and median bias from AR(1) processes.8,9 As expected,

7Full results are available from authors upon request.
8Similar results were obtained from AR(2) processes. For AR(2) models, we controled for nuisance parameters

(coefficients on lagged differenced variables) as described in Section 2.
9We define mean (median) bias as a difference between the true value of ρ and the mean (median) value of the

least squares point estimates from 5, 000 simulations.
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both types of bias increase as ρ becomes larger, and become greater when the sample size decreases.

For instance, when ρ = 0.95 and N = 100, the mean bias is −0.043, while the median bias is -0.035.

For a pair (ρ,N) = (0.70, 200), bias is still non-negligible but much smaller, −0.016 and −0.013 for

the mean and the median bias, respectively.

Figure 1 about here

We also investigate the characteristics of the variance of the estimators, which serves as the

other important factor of the mean square error. Figure 2 reports two sets of variance ratios,

V (RMA)/V (LS) and V (GB)/V (LS), for the forecasting horizon from 1 to 6. Major findings are

as follows.

Correcting for bias overall increases the variance no matter which bias-correction method applies

with an exception of the RMAmethod for highly persistent data with fairly smallN . It is interesting

to see that relative variances tend to be smaller as ρ increases toward one. Given that bias is

greater for more persistent data, this implies that one has to correct for bias when forecasting

highly persistent time series variables.

It should be also noted that relative variances overall decrease as N increases, which implies

that the gains from correcting for bias depend only weakly to the number of observations, because

increases in N tend to reduce both the bias and the variance when bias correction methods (es-

pecially for the GB) apply. Relative variances tend to increase as the forecast horizon increases,

which implies that bias-correction methods become less attractive for longer-horizon out-of-sample

forecasting. Overall relative variances are greater when the GB method applies than RMA.

Figure 2 about here

Next, we compare simulated out-of-sample forecast performances of the bias-correction methods

with those of the LS. Results for AR(1) processes are reported in Table 1, while Table 2 reports

results for AR(2) models.
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Table 1 confirms most of our conjectures above. When the true data generating process is

highly persistent, say ρ is 0.975 or above, there are evident gains from correcting for bias no

matter which method applies. Even for low persistence data, bias-correction may be needed if the

forecast horizon is very short. It is also confirmed that more observations (N) do not necessarily

lead to a diminishing role of bias-correction methods for achieving better out-of-sample forecasting

performances, because both the bias and the variance tend to decrease as N goes up.

Table 1 about here

In what follows, we provide evidence that these findings are valid for higher order AR processes

as well. Since bias-correction seems desirable only when ρ is sufficiently large, we consider fairly

persistent AR(2) processes to compare forecast performances for higher order AR models, that is,

ρ ∈ {0.65, 0.90, 0.95, 0.99} and β ∈ {−0.20, 0.30}.10

As in AR(1) processes, we find gains from bias-correction only when the true data generating

process is persistent. The sample size (N) matters only weakly and the length of the forecast horizon

seems important again. The nuisance parameter (β) does not matter because bias-correction is

made conditional on the realized β estimates (Hansen 1999).

Table 2 about here

4 Empirical Results

This section provides a real data application to examine the validity of the findings from our Monte

Carlo simulation experiments in Section 3.
10Note that, for example, yt = ρyt−1 + 0.30∆yt−1 + ut and yt = ρyt−1 − 0.20∆yt−1 + ut share the same degree

persistence (ρ), and are equivalent to yt = (ρ + 0.30)yt−1 − 0.30yt−2 + ut and yt = (ρ − 0.20)yt−1 + 0.20yt−2 + ut,
respectively.
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We use 7 quarterly commodity price indices, the CRB Spot Index and its six sub-indices,

obtained from the Commodity Research Bureau (CRB) for the period of 1974.Q1 to 2008.Q3.11 ,12

The number of lags (k) was chosen by the general-to-specific rule with a maximum lag length of

6. The 95% confidence interval was obtained by 10, 000 bootstrap simulations from the empirical

distributions.

Table 3 reports the estimates for the persistence parameter (ρ) in (3). We find that both the

RMA and the GB methods yield substantial bias-corrections. For example, the ρ estimate for the

Spot Index increases from 0.950 (LS) to 0.969 (RMA) and 0.975 (GB) after correcting for bias.

This is far from being negligible because corresponding half-life estimates are 3.378, 5.503, and

6.844 years, respectively.13 Note that all median-bias corrected (GB) 95% confidence bands for the

half-life extend to positive infinity, which occurs often in other studies (see Rossi, 2005, and Murray

and Papell, 2002, for similar results), while all 95% confidence intervals by RMA remain finite (see

Kim and Moh, 2010, for similar results). Note also that median-unbiased estimates by the GB are

not restricted to be less than one, because the GB is based on the local-to-unity framework and

allows even mildly explosive processes.14

Table 3 about here

We now evaluate and compare the out-of-sample forecasting ability of the LS, the RMA, and

the GB methods with two alternative forecasting strategies. First, we utilize first 69 out of 139
11 In order to reduce noise in the data, we converted monthly frequency raw data to quarterly data by taking

end-of-period values. Alternatively, one may use quarterly averages. Averaging time series data, however, creates
time aggregation bias as pointed out by Taylor (2001).
12There is a known structural break in 1973, the year of the demise of the Bretton Woods system. Because of the

devaluation of the US dollar, all CRB indices, which are based on commodity prices in the US dollar term, rapidly
adjusted to higher levels in 1973. Since our main objective is to evaluate relative forecast performances of competing
estimators, we use observations starting from 1974.Q1 instead of using a dummy variable for the Bretton Woods era.
13The half-life was calculated by ln(0.5)/ ln(ρ), adjusted for the data frequency, assuming that deviations diminish

monotonically. This is exactly true for AR(1) processes. For higher order AR(p) models, this method is only
approximately valid, and the impulse-response function can be used for precise estimates (see Cheung and Lai, 1995).
We do not pursue this because it is not our major concern.
14When the true data generating process is I(1), one may use AR models with differenced variables, then correct

for biases. Median/Mean bias for such models, however, tends to be small, because differenced variables often exhibit
much weaker persistence. Since we are interested in evaluating the usefulness of bias-corrected estimators, we do not
consider such models.
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observations to obtain h-step ahead forecasts. Then, we keep forecasting recursively by adding one

observation in each iteration until we forecast the last observation. Second, we obtain h-step ahead

forecasts using first 69 observations, then keep forecasting with a rolling window by adding and

dropping one observation in each iteration, maintaining 69 observations, until we reach the end of

full sample. We report the relative root mean squared prediction errors (RRMSPE; LS/RMA and

LS/GB) for 1 through 6 forecasting horizons in Tables 4 and 5.

Overall, we find that both bias-correction methods outperform the LS estimator (RRMSPE

greater than one) with an exception of the CRB Textile sub-index, which has relatively low per-

sistence. Similarly weaker evidence is found for the Fats and Oil sub-index. These results are

consistent with the findings in Section 3. That is, our real data application confirms that there

are gains from correcting for bias only when the data is highly persistent. The forecast horizon

may seem less important in this application, because forecasting performances are uniformly better

with bias correction over different forecast horizons (except the Textile index). That is not true

because there should be gains from bias correction when the data is highly persistent, which is the

case here for majority indices we use. Neither of forecasting strategies strictly dominates the other

one in terms of the RRMSPE.

Tables 4 and 5 about here

5 Concluding Remarks

This paper evaluates relative forecast performances of two bias-correction methods, Recurisve Mean

Adjustment (RMA) and the grid bootstrap (GB) method, to the least squares (LS) estimator

without bias-correction. When an intercept or an intercept and linear time trend are included in

AR models, the LS estimator for the persistent parameter is downward-biased. However, it is not

clear whether bias-correction will achieve better out-of-sample forecasting performances, because
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correcting for bias tends to increase the variance of the estimator. The present paper attempts to

provide some guidance on when to correct for bias to enhance out-of-sample forecast accuracy.

Our Monte Carlo simulation experiments reveal that there is a gain from bias-correction only

when the data is substantially persistent. Interestingly, the sample size (N) itself does not matter

much. This is because both the bias and the variance tend to decrease as N increases. The forecast

horizon may matter only when one forecasts low persistence variables. Our real data application

with 7 commodity price indices overall confirms these findings.
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Table 1. Simulated Forecast Performance Comparison: AR(1) Models
yt = c+ ρyt−1 + ut

One-Period Ahead Forecast
LS/RMA LS/GB

ρ T = 50 100 150 200 T = 50 100 150 200
0.500 0.99840 1.00004 1.00041 0.99944 0.99805 0.99983 1.00024 0.99979
0.600 0.99956 0.99988 1.00001 1.00034 0.99842 0.99958 1.00010 0.99997
0.700 1.00110 0.99890 1.00044 1.00031 0.99850 0.99903 1.00008 1.00013
0.750 1.00332 1.00051 0.99949 1.00018 0.99980 1.00056 0.99947 1.00026
0.800 1.00290 1.00067 1.00053 1.00007 0.99830 1.00000 1.00022 1.00014
0.850 1.00467 0.99926 1.00035 0.99971 0.99922 0.99820 1.00055 0.99937
0.900 1.00961 1.00053 1.00082 0.99991 1.00450 0.99747 0.99993 0.99898
0.925 1.01383 1.00254 1.00337 1.00014 1.00863 0.99929 1.00167 0.99946
0.950 1.03537 1.00649 1.00087 1.00215 1.03052 1.00265 0.99838 1.00172
0.975 1.08439 1.01947 1.00713 1.00309 1.07599 1.01854 1.00490 1.00249
0.990 1.16831 1.06879 1.03002 1.01381 1.15020 1.05775 1.02899 1.01170

Two-Period Ahead Forecast
LS/RMA LS/GB

ρ T = 50 100 150 200 T = 50 100 150 200
0.500 0.99613 0.99938 1.00006 0.99961 0.99587 0.99929 1.00005 0.99982
0.600 0.99708 0.99882 0.99982 0.99998 0.99566 0.99887 0.99989 0.99999
0.700 0.99719 0.99795 1.00013 0.99963 0.99412 0.99819 1.00023 0.99986
0.750 1.00008 0.99953 0.99911 0.99993 0.99465 0.99926 0.99904 0.99968
0.800 0.99831 0.99991 1.00047 0.99909 0.98977 0.99884 0.99972 0.99928
0.850 1.00206 0.99931 0.99927 1.00016 0.99400 0.99760 0.99941 0.99981
0.900 1.00928 0.99987 1.00098 0.99949 1.00048 0.99494 0.99919 0.99873
0.925 1.01920 1.00098 1.00420 1.00023 1.01219 0.99567 1.00126 0.99945
0.950 1.03956 1.00714 1.00376 1.00113 1.03462 0.99958 1.00049 1.00021
0.975 1.10045 1.03406 1.01282 1.00366 1.10113 1.03122 1.00945 1.00239
0.990 1.19067 1.10375 1.05162 1.02950 1.18415 1.09281 1.04821 1.02405

Note: LS/RMA and LS/GB are the relative root mean squared prediction errors (RMSPE) for the Least
Squares (LS) and to those of the Recursive Mean Adjustment (RMA), and to those of the grid bootstrap
(GB) estimators, respectively.
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Table 1 (Continued). Simulated Forecast Performance Comparison: AR(1) Models
yt = c+ ρyt−1 + ut

Three-Period Ahead Forecast
LS/RMA LS/GB

ρ T = 50 100 150 200 T = 50 100 150 200
0.500 0.99606 0.99978 0.99939 0.99958 0.99595 0.99972 0.99957 0.99960
0.600 0.99676 0.99805 0.99972 0.99979 0.99530 0.99852 0.99964 0.99985
0.700 0.99369 0.99780 0.99918 0.99951 0.98896 0.99816 0.99932 0.99956
0.750 0.99627 0.99781 0.99848 1.00030 0.98946 0.99769 0.99836 0.99991
0.800 0.99347 0.99755 1.00073 0.99860 0.98204 0.99677 0.99965 0.99886
0.850 0.99835 0.99732 0.99919 0.99994 0.98684 0.99519 0.99907 0.99951
0.900 1.00297 0.99731 1.00031 0.99945 0.99086 0.99098 0.99814 0.99795
0.925 1.01666 0.99951 1.00466 0.99918 1.00747 0.99209 1.00043 0.99823
0.950 1.04037 1.00811 1.00349 1.00088 1.03528 0.99934 0.99870 0.99930
0.975 1.10400 1.03839 1.01489 1.00684 1.11335 1.03220 1.01011 1.00448
0.990 1.19202 1.12465 1.06915 1.04102 1.19803 1.11383 1.06245 1.03288

Four-Period Ahead Forecast
LS/RMA LS/GB

ρ T = 50 100 150 200 T = 50 100 150 200
0.500 0.99685 1.00018 0.99975 0.99982 0.99673 0.99997 0.99980 0.99997
0.600 0.99508 0.99814 0.99991 0.99936 0.99392 0.99864 0.99983 0.99946
0.700 0.99115 0.99693 0.99857 0.99954 0.98592 0.99756 0.99893 0.99965
0.750 0.98907 0.99600 0.99784 0.99998 0.98075 0.99649 0.99785 0.99976
0.800 0.98913 0.99716 0.99924 0.99836 0.97568 0.99626 0.99836 0.99870
0.850 0.99228 0.99499 0.99921 0.99965 0.97738 0.99352 0.99870 0.99913
0.900 0.99628 0.99524 0.99897 1.00001 0.98158 0.98765 0.99605 0.99795
0.925 1.00602 0.99626 1.00244 0.99877 0.99626 0.98554 0.99788 0.99738
0.950 1.03222 1.00865 1.00299 0.99950 1.02937 0.99904 0.99718 0.99741
0.975 1.10167 1.04261 1.01716 1.00713 1.11807 1.03781 1.01170 1.00441
0.990 1.18337 1.13849 1.08121 1.04893 1.20919 1.13134 1.07112 1.03940

Note: LS/RMA and LS/GB are the relative root mean squared prediction errors (RMSPE) for the Least
Squares (LS) and to those of the Recursive Mean Adjustment (RMA), and to those of the grid bootstrap
(GB) estimators, respectively.
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Table 1 (Continued). Simulated Forecast Performance Comparison: AR(1) Models
yt = c+ ρyt−1 + ut

Five-Period Ahead Forecast
LS/RMA LS/GB

ρ T = 50 100 150 200 T = 50 100 150 200
0.500 0.99815 0.99981 0.99968 0.99988 0.99769 0.99984 0.99978 0.99990
0.600 0.99586 0.99886 0.99936 0.99973 0.99425 0.99901 0.99954 0.99965
0.700 0.99002 0.99703 0.99912 0.99974 0.98393 0.99717 0.99957 0.99978
0.750 0.98800 0.99541 0.99752 0.99993 0.97795 0.99581 0.99791 0.99955
0.800 0.98692 0.99492 0.99966 0.99811 0.97192 0.99401 0.99888 0.99849
0.850 0.98392 0.99280 0.99731 0.99878 0.96619 0.99134 0.99733 0.99810
0.900 0.98590 0.99262 0.99810 0.99898 0.96676 0.98384 0.99408 0.99662
0.925 0.99861 0.99588 1.00053 0.99793 0.98736 0.98399 0.99552 0.99580
0.950 1.02373 1.00388 1.00248 0.99961 1.02217 0.99185 0.99504 0.99713
0.975 1.08599 1.04117 1.01561 1.00811 1.11412 1.03553 1.01007 1.00410
0.990 1.16565 1.13669 1.08768 1.05338 1.20979 1.13403 1.07822 1.04403

Six-Period Ahead Forecast
LS/RMA LS/GB

ρ T = 50 100 150 200 T = 50 100 150 200
0.500 0.99844 0.99979 0.99991 0.99999 0.99823 0.99972 0.99993 1.00000
0.600 0.99628 0.99888 0.99963 0.99977 0.99497 0.99905 0.99974 0.99984
0.700 0.98970 0.99741 0.99910 0.99969 0.98217 0.99756 0.99942 0.99981
0.750 0.98778 0.99538 0.99859 0.99956 0.97675 0.99563 0.99872 0.99923
0.800 0.98392 0.99497 0.99941 0.99764 0.96698 0.99431 0.99886 0.99809
0.850 0.97782 0.99338 0.99655 0.99760 0.95720 0.99109 0.99663 0.99735
0.900 0.98295 0.99010 0.99626 0.99831 0.96116 0.97825 0.99179 0.99568
0.925 0.98936 0.99459 0.99832 0.99613 0.97657 0.98076 0.99244 0.99357
0.950 1.00840 1.00032 1.00058 0.99975 1.00981 0.98810 0.99206 0.99619
0.975 1.06642 1.03615 1.01587 1.00788 1.10566 1.03284 1.00941 1.00240
0.990 1.14025 1.13640 1.09457 1.05454 1.20787 1.13675 1.08467 1.04832

Note: LS/RMA and LS/GB are the relative root mean squared prediction errors (RMSPE) for the Least
Squares (LS) and to those of the Recursive Mean Adjustment (RMA), and to those of the grid bootstrap
(GB) estimators, respectively.
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Table 2. Simulated Forecast Performance Comparison: AR(2) Models
yt = c+ ρyt−1 + β∆yt−1 + ut

One-Period Ahead Forecast
LS/RMA LS/GB

ρ β T = 50 100 150 200 T = 50 100 150 200
0.65 0.30 0.99931 0.99987 1.00091 1.00060 0.99204 0.99987 1.00052 0.99717

−0.20 0.99847 0.99966 1.00083 1.00089 0.99023 1.00057 1.00253 0.99663
0.90 0.30 1.00147 1.00195 1.00187 1.00173 0.98590 0.99499 1.00053 1.00015

−0.20 1.00800 1.00310 1.00335 1.00206 0.99318 0.99952 1.00084 0.99982
0.95 0.30 1.01728 1.00496 1.00400 1.00250 0.99761 0.99776 1.00206 1.00082

−0.20 1.03743 1.01015 1.00696 1.00278 1.02575 1.00147 1.00547 0.99866
0.99 0.30 1.13617 1.05408 1.02546 1.01309 1.11007 1.03543 1.02187 1.01250

−0.20 1.14977 1.09092 1.04462 1.02604 1.14345 1.06239 1.04044 1.02342

Two-Period Ahead Forecast
LS/RMA LS/GB

ρ β T = 50 100 150 200 T = 50 100 150 200
0.65 0.30 0.99349 0.99917 1.00006 1.00084 0.98973 0.99907 1.00140 0.99963

−0.20 0.99565 0.99919 1.00005 1.00059 0.98597 0.99955 0.99995 1.00072
0.90 0.30 1.00086 1.00138 1.00236 1.00132 0.98063 0.99173 1.00199 1.00067

−0.20 1.01054 1.00285 1.00413 1.00081 0.99419 0.98857 1.00421 1.00047
0.95 0.30 1.03049 1.00610 1.00610 1.00167 1.00558 0.99092 1.00339 0.99987

−0.20 1.05513 1.01507 1.00957 1.00051 1.03905 1.00102 1.00732 0.99719
0.99 0.30 1.18774 1.08876 1.04209 1.01261 1.16307 1.06188 1.03743 1.01293

−0.2 1.18876 1.14043 1.07372 1.02763 1.19374 1.10578 1.06532 1.02728

Three-Period Ahead Forecast
LS/RMA LS/GB

ρ β T = 50 100 150 200 T = 50 100 150 200
0.65 0.30 0.98842 0.99916 1.00031 1.00091 0.98221 0.99999 1.00198 1.00183

−0.20 0.99128 0.99890 0.99998 1.00129 0.97313 0.99691 1.00165 0.99881
0.90 0.30 0.99390 0.99912 1.00153 1.00363 0.96279 0.98807 1.00151 1.00193

−0.20 1.00367 0.99853 1.00260 1.00484 0.97560 0.97953 0.99952 1.00334
0.95 0.30 1.02841 1.00306 1.00537 1.00487 0.99635 0.98127 1.00028 1.00128

−0.20 1.05528 1.01044 1.00796 1.00654 1.03213 0.99044 1.00011 1.00160
0.99 0.30 1.19806 1.10806 1.04978 1.02011 1.17780 1.07750 1.03976 1.01951

−0.20 1.19690 1.16083 1.08359 1.04177 1.20726 1.12422 1.06700 1.04364

Note: LS/RMA and LS/GB are the relative root mean squared prediction errors (RMSPE) for the Least
Squares (LS) and to those of the Recursive Mean Adjustment (RMA), and to those of the grid bootstrap
(GB) estimators, respectively.
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Table 2 (Continued). Simulated Forecast Performance Comparison: AR(2) Models
yt = c+ ρyt−1 + β∆yt−1 + ut

Four-Period Ahead Forecast
LS/RMA LS/GB

ρ β T = 50 100 150 200 T = 50 100 150 200
0.65 0.30 0.98752 0.99815 0.99896 1.00000 0.98354 0.99772 0.99973 1.00052

−0.20 0.99095 0.99772 0.99836 1.00043 0.96868 0.99710 0.99816 1.00016
0.90 0.30 0.98438 0.99780 0.99867 1.00354 0.94345 0.98729 0.99860 1.00172

−0.20 0.99467 1.00008 0.99996 1.00321 0.95551 0.98028 0.99485 1.00018
0.95 0.30 1.01547 1.00399 1.00283 1.00521 0.97936 0.97939 0.99515 0.99972

−0.20 1.04109 1.01686 1.00711 1.00444 1.01601 0.99540 0.99251 0.99669
0.99 0.30 1.18230 1.12465 1.05784 1.02303 1.16863 1.08644 1.04018 1.01776

−0.20 1.17219 1.17928 1.10411 1.04772 1.18932 1.12734 1.07816 1.03931

Five-Period Ahead Forecast
LS/RMA LS/GB

ρ β T = 50 100 150 200 T = 50 100 150 200
0.65 0.30 0.99295 0.99909 0.99868 0.99995 0.98812 0.99971 0.99930 0.99980

−0.20 0.99277 0.99923 0.99793 1.00061 0.96597 0.99892 0.99811 1.00020
0.90 0.30 0.97454 0.99808 0.99563 1.00293 0.92484 0.98438 0.99637 1.00064

−0.20 0.98751 1.00085 0.99753 1.00235 0.93425 0.97484 0.99225 0.99814
0.95 0.30 1.00105 1.00534 1.00006 1.00429 0.95635 0.97608 0.99087 0.99769

−0.20 1.03355 1.01938 1.00552 1.00355 0.99031 0.99068 0.98780 0.99394
0.99 0.30 1.16269 1.13533 1.06378 1.02530 1.14667 1.09225 1.04160 1.01749

−0.20 1.15964 1.19051 1.11638 1.05401 1.16676 1.13769 1.08844 1.04479

Six-Period Ahead Forecast
LS/RMA LS/GB

ρ β T = 50 100 150 200 T = 50 100 150 200
0.65 0.30 0.99452 0.99969 0.99929 0.99972 0.99015 1.00106 0.99930 0.99956

−0.20 0.99021 0.99976 0.99828 1.00030 0.96006 0.99852 0.99848 1.00011
0.90 0.30 0.96393 0.99760 0.99357 1.00303 0.90392 0.98083 0.99496 1.00065

−0.20 0.97502 1.00012 0.99675 1.00399 0.90649 0.96954 0.99052 1.00039
0.95 0.30 0.98524 1.00543 0.99830 1.00522 0.92761 0.97172 0.98778 0.99805

−0.20 1.01819 1.02051 1.00595 1.00664 0.95959 0.99121 0.98615 0.99550
0.99 0.30 1.14182 1.14123 1.06983 1.03033 1.11420 1.10154 1.04510 1.01949

−0.20 1.14107 1.19439 1.12748 1.06501 1.13391 1.14489 1.09725 1.05014

Note: LS/RMA and LS/GB are the relative root mean squared prediction errors (RMSPE) for the Least
Squares (LS) and to those of the Recursive Mean Adjustment (RMA), and to those of the grid bootstrap
(GB) estimators, respectively.
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Table 3. Persistence Parameter Estimation Results

Index ρL CI ρR CI ρG CI
Spot 0.950 [0.856,0.972] 0.969 [0.872,0.985] 0.975 [0.910,1.022]
Livestock 0.933 [0.770,0.966] 0.972 [0.795,0.986] 0.990 [0.875,1.044]
Fats and Oil 0.933 [0.776,0.965] 0.951 [0.800,0.985] 0.997 [0.864,1.049]
Foodstuff 0.952 [0.813,0.976] 0.977 [0.836,0.993] 1.008 [0.890,1.049]
Raw Industrials 0.940 [0.847,0.966] 0.969 [0.863,0.979] 0.955 [0.907,1.009]
Textiles 0.917 [0.807,0.951] 0.947 [0.824,0.967] 0.932 [0.874,1.003]
Metals 0.963 [0.870,0.981] 0.974 [0.887,0.993] 0.996 [0.929,1.024]

Index HLL CI HLR CI HLG CI
Spot 3.378 [1.114,6.102] 5.503 [1.265,11.47] 6.844 [1.837, ∞ ]
Livestock 2.499 [0.663,5.010] 6.102 [0.755,12.29] 17.24 [1.298, ∞ ]
Fats and Oil 2.499 [0.683,4.864] 3.449 [0.777,11.47] 57.68 [1.185, ∞ ]
Foodstuff 3.523 [0.837,7.133] 7.447 [0.967,24.70] ∞ [1.487, ∞ ]
Raw Industrials 2.801 [1.044,5.010] 5.503 [1.176,8.165] 3.764 [1.775, ∞ ]
Textiles 2.000 [0.808,3.449] 3.182 [0.895,5.164] 2.461 [1.287, ∞ ]
Metals 4.596 [1.244,9.033] 6.578 [1.445,24.70] 43.24 [2.353, ∞ ]

Note: i) The number of lags (k) was chosen by the general-to-specific rule as recommended by Ng and
Perron (2001). ii) ρL, ρR, and ρG denote the least squares (LS), recursive mean adjustment (RMA,
So and Shin 1999), and the grid bootstrap (GB, Hansen 1999) estimates for persistence parameter,
respectively. iii) 95% confidence intervals (CI) were constructed by 10,000 nonparametric bootstrap
simulations for the LS and RMA estimators, and by 10,000 nonparametric bootstrap simulations on 30
grid points over the neighborhood of the LS estimate for the GB estimator. iv) HLL, HLR, and HLG
denote the corresponding half-lives in years, calculated by (ln(0.5)/ln(ρ))/4.
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Table 4. Recursive Out-of-Sample Forecast Results

Index h LS/RMA LS/GB Index h LS/RMA LS/GB
Spot 1 1.031 1.004 Raw Industrials 1 1.028 1.009

2 1.059 1.033 2 1.057 1.021
3 1.065 1.029 3 1.056 1.023
4 1.050 1.018 4 1.036 1.010
6 1.026 1.012 6 1.030 1.015

Livestock 1 1.035 1.012 Textiles 1 0.993 0.989
2 1.066 1.025 2 0.997 0.999
3 1.035 1.012 3 0.990 0.994
4 1.039 1.011 4 0.978 0.985
6 1.034 1.021 6 0.964 0.973

Fats and Oil 1 1.003 0.995 Metals 1 1.020 1.014
2 1.013 1.018 2 1.031 1.034
3 1.008 1.011 3 1.033 1.046
4 1.001 1.003 4 1.016 1.024
6 0.994 0.992 6 1.019 1.025

Foodstuff 1 1.027 1.029
2 1.032 1.040
3 1.017 1.022
4 1.015 1.020
6 1.003 1.004

Note: i) Out-of-sample forecasting was recursively implemented by sequentially adding one additional
observation from 69 initial observations toward 139 total observations. ii) The number of lags (k) was
chosen by the general-to-specific rule recommended by Ng and Perron (2001). iii) h denotes the forecast
horizon (quarters). iv) LS/RMA and LS/GB are the relative root mean squared prediction errors (RM-
SPE) for the Least Squares (LS) and to those of the Recursive Mean Adjustment (RMA), and to those
of the grid bootstrap (GB) estimators, respectively.
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Table 5. Rolling Window Out-of-Sample Forecast Results

Index h LS/RMA LS/GB Index h LS/RMA LS/GB
Spot 1 1.006 1.010 Raw Industrials 1 1.007 1.021

2 1.039 1.054 2 1.014 1.049
3 1.046 1.066 3 1.004 1.035
4 1.034 1.046 4 1.007 1.034
6 1.032 1.043 6 1.000 1.020

Livestock 1 1.014 1.008 Textiles 1 1.017 1.002
2 1.030 1.058 2 1.029 1.009
3 1.026 1.039 3 1.010 0.999
4 1.020 1.036 4 0.990 0.991
6 1.012 1.036 6 0.985 0.985

Fats and Oil 1 1.001 1.011 Metals 1 0.998 1.006
2 1.005 1.037 2 0.997 1.014
3 1.001 1.035 3 1.004 1.035
4 0.994 1.018 4 1.003 1.028
6 0.980 0.989 6 1.002 1.019

Foodstuff 1 1.010 1.016
2 1.034 1.069
3 1.018 1.057
4 1.016 1.055
6 1.007 1.032

Note: i) Out-of-sample forecasting was implemented by sequentially adding one additional observation
and dropping one observation in each iteration, maintaining 69 observations. ii) The number of lags
(k) was chosen by the general-to-specific rule recommended by Ng and Perron (2001). iii) h denotes
the forecast horizon (quarters). iv) LS/RMA and LS/GB are the relative root mean squared prediction
errors (RMSPE) for the Least Squares (LS) and to those of the Recursive Mean Adjustment (RMA),
and to those of the grid bootstrap (GB) estimators, respectively.
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Figure 1. Small Sample Bias: AR(1) Models

Note: We define the mean (median ) bias as a difference between the true value of ρand the mean
(median) value of the least squares estimates from 5,000 simulations.
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Figure 2. Variance Ratios

Note: V(RMA)/V(LS) and V(GB)/V(LS) denote the estimate variance ratios from 1- to 6-period ahead
forecasts by the RMA, the GB, and the LS methods. Each variance was calculated by 5,000 simulations.
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Figure 2 (continued). Variance Ratios

Note: V(RMA)/V(LS) and V(GB)/V(LS) denote the estimate variance ratios from 1- to 6-period ahead
forecasts by the RMA, the GB, and the LS methods. Each variance was calculated by 5,000 simulations.

24


