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Abstract

This paper revisits empirical evidence of mean reversion of relative stock prices in

international stock markets. We implement a strand of univariate and panel unit root

tests for linear and nonlinear models of 18 national stock indices from 1969 to 2016. Our

major findings are as follows. First, we find strong evidence of nonlinear mean reversion

of the relative stock price with the UK index as the reference, calling attention to the

stock index in the UK, but not with the US index. Our results imply an important role

of the local common factor in the European stock markets. Second, panel tests yield

no evidence of linear and nonlinear stationarity when the cross-section dependence

is considered, which provides conflicting results from those of the univariate tests.

Last, we show how to understand these results via dynamic factor analysis. When

the stationary common factor dominates nonstationary idiosyncratic components in

small samples, panel tests that filter out the stationary common factor may yield

evidence against the stationarity null hypothesis in finite samples. We corroborate this

conjecture via extensive Monte Carlo simulations.
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1 Introduction

It is an interesting question in international finance whether deviations between stock indices

are short-lived. If so, one can diversify international portfolios by short-selling well perform-

ing assets and purchasing poorly performing assets to obtain excess returns as shown by

Balvers, Wu, and Gilliland (2000). Such a strategy is called the contrarian investment strat-

egy, and it may imply that stocks become less risky in the long run and are attractive

for long-term investors (Spierdijk, Bikker, and van den Hoek (2012)). On the contrary, if

deviations are permanent, one should short worse performing assets while buying better

performing ones, because winner-loser reversals are not likely to happen. This is called the

momentum strategy.

Since the end of the 1980’s, many researchers have examined mean reversion properties

in stock markets. Fama and French (1988) and Poterba and Summers (1988) among others

were the first to provide the evidence in favor of mean reversion. Fama and French (1988)

state that 25-40% of the variation in 3-5 year stock returns can be attributed to negative

serial correlation. Poterba and Summers (1988) found that a substantial part of the variance

of the US stock returns is due to a transitory component. However, Richardson and Smith

(1991) showed that there is no evidence for long-term mean reversion if the small-sample bias

is controlled. Kim, Nelson, and Startz (1991) report very weak evidence of mean reversion

in the post-war era. Jegadeesh (1991) shows that mean reversion in stock prices is entirely

concentrated in January.

An array of researchers investigated possible cointegration properties of the stock indices

and their fundamental variables. For example, Campbell and Shiller (2001) examine the

mean-reverting behavior of the dividend yield and price-earnings ratio over time. If stock

prices are high in comparison to firms’fundamentals, it is expected that adjustments toward

an equilibrium will be made. They find that stock prices contribute most to adjusting the

ratios towards an equilibrium level.

Balvers, Wu, and Gilliland (2000) considered relative stock price indices of eighteen

OECD countries compared to a world index to get around the diffi cult task of specifying

a fundamental or trend path. Under the assumption that the difference between the trend

path of one country’s stock price index and that of a reference index is stationary, and that

the speeds of mean reversion in different countries are similar, they found substantial panel

evidence of mean reversion of relative stock price indices with a half-life of approximately

3.5 years. Similar evidence has been reported by Chaudhuri and Wu (2004) for 17 emerging

equity markets.

However, it may be too restrictive to assume a constant speed of mean reversion, since
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the speed of mean reversion may depend on the economic and political environment, and

also it may change over time. For example, Kim, Nelson, and Startz (1991) conclude that

mean reversion is a pre-World War II phenomenon only. Poterba and Summers (1988)

find that the Great Depression had a significant influence on the speed of mean reversion.

Furthermore, their panel unit root test may have a serious size distortion problem in the

presence of cross-section dependence (Phillips and Sul (2003)). Controlling for cross-section

dependence, Kim (2009) reports much weaker evidence of mean reversion of relative stock

prices across international stock markets.

In recent work, Spierdijk, Bikker, and van den Hoek (2012) employed a wild bootstrap

method to get the median unbiased estimation and a rolling window approach to a long

horizon data (1900-2009) for their analysis. They find that stock prices revert more rapidly to

their fundamental values in periods of high economic uncertainty, caused by major economic

and political events such as the Great Depression and the start of World War II. They report

a statistically significant mean reversion for most of their sub-sample periods, but their panel

test results don’t seem to match their univariate test results very well.1 Also in their panel

model, they assumed that the speed of mean reversion is constant as in Balvers, Wu, and

Gilliland (2000), which is not ideal because estimated mean reversion rates are very different

across countries.

Wälti (2011) studied the relationship between stock market co-movements and mone-

tary integration. He reports that greater trade linkages and stronger financial integration

contribute to greater stock market co-movements.2

In the present paper, we revisit the findings by Balvers, Wu, and Gilliland (2000) by

re-examining the mean reversion of the relative stock price in international stock markets,

employing nonlinear unit root tests in addition to linear tests for 18 developed countries

during the period 1969 to 2016.3,4 Our major findings are as follows.

1For example, with the US benchmark, only France shows mean reversion with the univariate test but
there is a solid stationarity with the panel test.

2Also the author concludes that lower exchange rate volatility and joint EMU membership are associ-
ated with stronger stock market comovements. The joint significance of these two variables indicates that
monetary integration raises return correlations by reducing transaction costs coming from exchange rate
uncertainty, and through the common monetary policy and the convergence of inflation expectations leading
to more homogeneous valuations.

3Mean reversion of the relative stock price implies that deviations from a common stochastic trend are
short-lived, which implies a cointegrating relationship for a pair of international stock indices as we describe
later in Equation (1).

4Nonlinear models have been widely used in the study of financial data to account for state-dependent
stochastic behavior due to market frictions such as transaction costs; examples include, for exchange rates
and law of one price, Obstfeld and Taylor (1997), Taylor, Peel, and Sarno (2001), Lo and Zivot (2001), Sarno,
Taylor, and Chowdhury (2004) and Lee and Chou (2013), and for stock prices or returns, Bali, Demirtas, and
Levy (2008), Zhu and Zhu (2013) and Kim and Ryu (2015). Nonlinear models are also used for the study
of commodity prices (for example, Balagtas and Holt (2009), Holt and Craig (2006), and Goodwin, Holt,
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First, we find strong evidence of nonlinear mean reversion of relative stock prices when the

UK serves as the reference country. On the other hand, very little evidence was found when

the US stock price serves the reference index, which is in stark contrast with Balvers, Wu,

and Gilliland (2000). This finding suggests that the contrarian investment strategy, using

the UK index as the reference, might outperform the momentum strategy when deviations of

the relative stock price are large. We note that 12 out of 18 developed countries in the sample

are European countries, which implies an important role of local fundamental variables that

govern European stock markets. That is, when stock prices are co-trending, the contrarian

strategy can be useful since deviations from the common (stochastic) trend tend to be short-

lived. Wälti (2011) also pointed out that monetary, trade, and financial integration through

the Economic and Monetary Union (EMU) has contributed to higher degree of stock market

return comovements in Europe.

In essence, our findings imply that the contrarian investment strategy would be useful

when national equity prices deviate suffi ciently from the UK stock index, while one may

employ the momentum strategy with the US as a reference.

Next, we re-examine our findings employing a series of panel unit roots tests: the lin-

ear panel unit root test by Pesaran (2007) and a nonlinear panel (PESTAR) unit root test

(Cerrato, De Peretti, Larsson, and Sarantis (2011)). These tests allow different mean re-

version rates across countries and also cross-sectional dependence. Thus, our approach is

less restrictive than Balvers, Wu, and Gilliland (2000) and Spierdijk, Bikker, and van den

Hoek (2012) and it should give more statistically reliable results. Surprisingly, we report

very weak panel evidence of mean reversion from these linear and nonlinear panel unit root

tests, which seems to be inconsistent with the univariate ESTAR test results with the UK

as the reference index that provide strong evidence of nonlinear mean reversion.

To look into these seemingly conflicting statistical results, we conducted a principal com-

ponent analysis via the PANIC method developed by Bai and Ng (2004). We note the em-

pirical evidence of stationarity of the estimated first common factor or cross-section means

that served as proxy variables for the common factor in our tests using the methods by Pe-

saran (2007) and Cerrato, De Peretti, Larsson, and Sarantis (2011) with the UK reference.

When the stationary first common factor dominates highly persistent or even nonstation-

ary idiosyncratic components in small samples, the panel unit root tests that filter out the

stationary common factor may yield evidence that favors nonstationarity in small samples,

while the univariate test rejects the null of nonstationarity. Via Monte Carlo simulations,

we confirm this conjecture, which adds a novel finding to the current literature.

and Prestemon (2011)) to address nonlinear adjustments towards the equilibrium due to costly transactions,
government interventions, or different expectations by individuals (Arize (2011)).
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The rest of the paper is organized as follows. Section 2 constructs our baseline model of

the relative stock indices. Sections 3 and 4 report univariate and panel unit root test results,

respectively. Section 5 discusses our results using a dynamic factor analysis framework.

Section 6 establishes and provides simulation results. Section 7 concludes.

2 The Baseline Model

We use a model of a stochastic process for national stock indices, employed in Kim (2009),

that is a revised model of Balvers, Wu, and Gilliland (2000).

Let pi,t be the the national stock index and fi,t be its fundamental value in country i, all

expressed in natural logarithms. We assume that pi,t and fi,t obey nonstationary stochastic

processes. If pi,t and fi,t share a unique nonstationary component, deviations of pi,t from fi,t

must die out eventually. That is, pi,t and fi,t are cointegrated with a known cointegrating

vector [1 − 1]. Such a stochastic process can be modeled by the following error correction

model,

∆(pi,t+1 − fi,t+1) = ai − λi(pi,t − fi,t) + εi,t+1, (1)

where 0 < λi < 1 represents the speed of convergence and εi,t is a mean-zero stochastic

process from an unknown distribution. The fundamental value fi,t is not directly observable,

but is assumed to obey the following stochastic process,

fi,t = ci + pw,t + υi,t, (2)

where ci is a country-specific constant, pw,t denotes a reference stock index price, and υi,t is

a zero-mean, possibly serially correlated stationary process from an unknown distribution.

Combining Equations (1) and (2) and after controlling for serial correlation, we obtain

the following augmented Dickey-Fuller equation for the relative stock price, ri,t = pi,t− pw,t,
for country i.5

ri,t = αi + ρiri,t−1 +
k∑
j=1

βi,j∆ri,t−j + ηi,t (3)

That is, ri,t measures deviations of the stock index in country i from a reference index at

time t. Note that ρi ∈ (0, 1) is the persistence parameter of the stock index deviation for

country i.

Note that Equation (3) is equivalent to Equation (4) in Balvers, Wu, and Gilliland (2000).

It should be noted, however, that Equation (3) does not require the homogeneity assumption

5Refer to Kim (2009) for derivation of the equation.
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for the convergence rate λ.6 Furthermore, we do not need to impose any distributional

assumptions on ηt.
7

3 Univariate Unit Root Tests

3.1 Data Descriptions

Following Balvers, Wu, and Gilliland (2000), we use a panel of yearly observations of the

Morgan Stanley Capital International (MSCI) stock price indices for 18 Developed Market

Group countries during the period 1969 to 2016 to test for mean reversion. The observations

are end-of-period (December) value-weighted gross index prices in US dollar terms that

include dividends. Table 1 provides summary statistics for the logarithm of the relative

stock indices (ri,t) of 17 countries to the two reference countries, the US and the UK.

The mean values of the index deviations relative to the US index range from -1.07 for

Italy to 1.61 for Hong Kong, and the standard deviations vary from 0.24 for France to 0.75

for Japan. The mean values of the stock index deviations relative to the UK index range

from -1.31 for Italy to 1.36 for Hong Kong, and the standard deviations vary from 0.21 for

France to 0.65 for Japan. We also checked the normality of the data using the Jarque-Bera

test. The test rejects the null hypothesis of normality at the 5% significance level for 2 and

6 countries with the US index and with the UK index, respectively.8

Table 1 around here

In the following two subsections for univariate tests we will drop country index i in the

equations for notational simplicity.

6In order to derive Equation (4) in Balvers, Wu, and Gilliland (2000) from their Equation (1), one has
to assume λi = λw where w refers to the reference country. Otherwise, the unobserved term P ∗it+1 in their
Equation (1) cannot be cancelled out and remains in their estimation equation.

7Balvers, Wu, and Gilliland (2000) use Andrews (1993)’s methodology to calculate the median unbiased
estimates and the corresponding confidence intervals, which requires. Gaussian error terms.

8The Jarque-Bera test tends to reject the null hypothesis more often for higher frequency financial data.
The test unanimously rejects the null of normality when we use the monthly frequency data. All results are
available from authors upon requests.
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3.2 Linear Unit-Root Test Analysis

We first implement univariate linear unit root tests, employing the following conventional

augmented Dickey-Fuller (ADF) test,

rt = α + ψt+ ρrt−1 +

k∑
j=1

βj∆rt−j + ηt, (4)

where ψ = 0 for the ADF test with an intercept only. We implemented the test for the

deviations of the logarithms of national stock price indices relative to that of the reference

country (US or UK). Results are reported in Table 2.

When the US index serves as the reference, the test rejects the null of nonstationarity for

4 out of 17 countries at the 10% significance level when an intercept is included (Belgium,

Germany, Hong Kong, and Norway). Allowing for trend stationarity, the test rejects for

no additional countries. When the UK index is used as the reference, the test rejects the

null for 5 out of 17 countries (Belgium, France, Germany, Hong Kong and Norway) when

an intercept is included. Allowing the time trend, the test rejects for 3 additional countries

(Italy, the Netherlands, and Sweden).

A rejection of the null hypothesis of nonstationarity implies that the national stock index

tends to synchronize with that of the reference country, because deviations of the national

stock price from the reference index are not permanent. That is, short-selling a better-

performing stock index and buying the other would generate financial gains on average.

Putting it differently, stationarity of rt suggests that the contrarian strategy would perform

well for the pair of the national stock index and the reference index.

Confining our attention only to such linear piecewise convergence, our findings imply

limited evidence in favor of the contrarian strategy, even though we observe stronger evidence

for the contrarian strategy when the UK index serves as the reference.

Table 2 around here

3.3 Nonlinear Unit-Root Test Analysis

It is known that the linear ADF test has low power when the true data generating process

(DGP) is nonlinear. One way to get around this diffi culty is to use a nonlinear unit-root

test. For this purpose, we revise the linear model (4) to a nonlinear model by allowing

transitions of the stock price deviation rt between the stationary and the nonstationary

regime. Stock prices may adjust to long-run equilibrium only when the deviation is big
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enough in the presence of a fixed transaction cost.9 Then, rt may follow a unit root process

locally around the long-run equilibrium value. We employ a variation of such stochastic

processes that allows gradual transitions between the regimes. Specifically, we assume the

following exponential smooth transition autoregressive process for rt,

rt = rt−1 + ξrt−1{1− exp(−θr2t−d)}+ εt, (5)

where θ is a strictly positive scale parameter so that 0 < exp(−θr2t−d) < 1, ξ is an unknown

parameter, and d is a delay parameter. Note that when rt−d is very big, that is, when

national stock price indices substantially deviate from the reference index, exp(−θr2t−d) be-
comes smaller, converging to 0, which implies that the stochastic process (5) becomes a

stationary AR(1) process (if 1 + ξ = ρ < 1). On the other hand, if rt−d is close to zero, then

rt becomes a unit root process. Alternatively, Equation (5) can be rewritten as

∆rt = ξrt−1{1− exp(−θr2t−d)}+ εt. (6)

Note that ξ is not identified under the unit root null hypothesis, which results in the so-called

“Davies Problem." To deal with it, Kapetanios, Shin, and Snell (2003) transformed it using

the first-order Taylor approximation as follows (assuming d = 1):

∆rt = δr3t−1 + εt. (7)

They show that, under the unit root null, the least squares t-statistic for δ has the following

asymptotic distribution,
1
4
W (1)2 − 3

2

∫ 1
0
W (1)2 ds√∫ 1

0
W (1)6 ds

, (8)

where W (s) is the standard Brownian motion defined on s ∈ [0, 1]. When error terms (εt)

are serially correlated, Equation (7) can be augmented as follows:

∆rt = δr3t−1 +

k∑
j=1

βj∆rt−j + εt. (9)

We tested the data for both when an intercept is included and when an intercept and

9Inaction bands motivated by transaction costs are less appealing to describe stock price dynamics because
financial assets can be often traded with very low transactions costs. We thank a referee for pointing this
out. However, small deviations from the equilibrium path may not trigger immediate arbitrages in financial
markets if there is high degree of uncertainty as to the nature of the shocks that causes the deviation, which
may justify the presence of inaction bands.
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time trend are included. Results are shown in Table 3.

Table 3 around here

With the US index, the test rejects the null hypothesis of nonstationarity only for two

countries (Hong Kong and the UK). With the UK as the reference country, however, the

test rejects the null hypothesis for 9 countries at the 10% significance level. Allowing a

time trend, the test rejects the null for 4 additional countries (Denmark, the Netherlands,

Singapore and Sweden). In combination with the results from the linear test, our empirical

findings yield a maximum of 14 rejections out of 17 countries at the 10% significance level

(i.e., no evidence for Australia, Japan, and Switzerland), while we obtained a maximum of

5 rejections out of 17 when the US serves as a reference country.10

These findings imply that the UK stock index may be used as an anchor index in con-

structing international equity portfolios. When deviations of national equity indices from the

UK index are large, one may short better performing assets while buying worse performing

assets, since winner-loser reversals are likely to happen. When the US stock index serves as

the reference, one should employ the momentum strategy because deviations of equity prices

seem to be permanent.

These results also imply that the local common component plays an important role in

the European stock markets. Note that 12 out of 18 developed countries in the sample are

European countries. If fi,t in Equation (1) is a Europe-specific local nonstationary funda-

mental variable, deviations from the UK index would die out eventually, and the contrarian

strategy can be useful. On the other hand, Equation (1) is a mis-specified model for the

relative stock price with the US reference when these countries don’t share the common

fundamental variable with the US.

4 Panel Unit Root Tests with Cross-Section Depen-

dence Consideration

It is known that the univariate ADF test has low power in small samples. In this section we

employ a series of panel unit root tests that are known to increase power over the univariate

tests (Taylor and Sarno (1998)).

10Note that the linear test shows the relative prices of Belgium, Germany and Norway vis-à-vis the US
are stationary, whereas the ESTAR does not. This may be due to the fact that the ESTAR test uses Taylor
approximation and could miss some useful information. See Kim and Moh (2010) for some discussion on the
issue.
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As Phillips and Sul (2003) pointed out, however, the so-called first-generation panel unit

root tests such as Maddala and Wu (1999), Levin, Lin, and James Chu (2002), and Im,

Pesaran, and Shin (2003) are known to be seriously over-sized (reject the null hypothesis too

often) when the data are cross-sectionally dependent. We first test this issue by employing

the statistic proposed by Pesaran (2004) described below in Equation (10),

CD =

√
2T

N(N − 1)

(
N−1∑
i=1

N∑
j=i+1

ρ̂i,j

)
d→ N(0, 1), (10)

where ρ̂i,j is the pair-wise correlation coeffi cients from the residuals of the ADF regressions

(4). The test statistics in Table 4 imply a very strong degree cross-section dependence. In

what follows, therefore, we employ available second-generation panel unit root tests with

cross-section dependence consideration.

Table 4 around here

4.1 Linear Panel Unit-Root Test Analysis

We first employ Pesaran (2007)’s cross-sectionally augmented panel ADF (PADF) test given

by

CIPS(N, T ) = tN,T = N−1
N∑
i=1

ti(N, T ), (11)

where ti(N, T ) is the t-statistic for bi from the following least squares regression,

∆ri,t = ai + biri,t−1 + cir̄t−1 +

p∑
j=0

dij∆r̄t−j +

p∑
j=1

δij∆ri,t−j + ei,t. (12)

Here, r̄t is the cross-section average at time t, which proxies the common factor component

for i = 1, ..., N . Note that this is a cross-sectionally augmented version of the IPS (Im,

Pesaran, and Shin (2003)) test.

We report test results in Table 5. In contrast to empirical evidence from Balvers, Wu,

and Gilliland (2000), we obtain very weak panel evidence of stationarity even at the 5%

significance level when we control for cross-section dependence, irrespective of the choice of

the reference country. This implies that the strong evidence of stationarity in Balvers, Wu,

and Gilliland (2000) could be due to size distortion caused by a failure to account for the

cross-section dependence.

Table 5 around here
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4.2 Nonlinear Panel Unit-Root Test Analysis

We next explore the panel evidence of nonlinear stationarity by employing a test proposed

by Cerrato, De Peretti, Larsson, and Sarantis (2011). This test is an extension of the

nonlinear ESTAR unit root test by Kapetanios, Shin, and Snell (2003) to a panel version

test in combination with the methodology suggested by Pesaran (2007) to address the issue

of cross-section dependence.

For this, we rewrite Equation (6) as the following set of equations,

∆ri,t = ξiri,t−1{1− exp(−θr2i,t−d)}+ εi,t, and εi,t = δift + ui,t, (13)

where δi is a country-specific factor loading, ft is a common factor, and ui,t is a (possibly

serially correlated) idiosyncratic shock. Cerrato, De Peretti, Larsson, and Sarantis (2011)

suggest the following nonlinear cross-section augmented IPS-type statistics,

tN,T = N−1
N∑
i=1

ti(N, T ), (14)

where ti(N, T ) is the t-statistic for βi,0 from the following least squares regression,

∆ri,t = αi + βi,0r
3
i,t−1 + γi,0r

3
t−1 +

p∑
j=1

(βi,j∆ri,t−j + γi,j∆r
3
t−j) + ei,t, (15)

where r̄t is the cross-section average at time t, which proxies the common factor component

for i = 1, ..., N . In the absence of cross-section dependence, γi,j = 0 for all i and j, and the

test statistic is reduced to nonlinear ESTAR test in Equation (9).

We report test results in Table 6. It is interesting to see that the test does not reject

the null hypothesis for both reference cases at the 10% significance level. This is somewhat

puzzling because we obtained strong evidence of nonlinear stationarity from the univariate

ESTAR tests when the UK serves as the reference country. Since the panel test (14) has the

alternative hypothesis that states that there are stationary ri,t for i = 1, ..., N1 and N1 > 0,

and the univariate test rejects the null for 9 out of 17 countries when an intercept is present

(13 out of 17 countries when both an intercept and time trend are present), it would be

natural to expect panel evidence of stationarity. Yet, we do not see it. To look into this

apparent contradiction further, we turn to a dynamic factor analysis in what follows, based

on the following conjecture.

If the first common factor is stationary and has dominating effects on ri,t in small sam-

ples, the stochastic properties of ri,t may resemble those of stationary variables even when

11



the idiosyncratic component is nonstationary. Even though the nonstationary idiosyncratic

component will eventually dominate the stationary common factor, unit root tests for finite

horizon observations may reject the null of nonstationarity.

Table 6 around here

5 Dynamic Factor Analysis

In this section, we attempt to understand seemingly inconsistent statistical evidence from

the univariate and the panel unit root test when the UK serves as the base country. We

note that the panel unit root tests from the previous section control for the cross-section

dependence by including the first common factor in the regression. We employ the following

factor structure motivated by the framework of the PANIC method by Bai and Ng (2004),

described as follows. First we write

ri,t = ai + λ
′

ift + ei,t,

(1− αL)ft = A(L)ut,

(1− ρiL)ei,t = Bi(L)εi,t,

(16)

where ai is a fixed effect intercept, ft = [f1 . . . fr]
′
is an r × 1 vector of (latent) common

factors, λi = [λi,1 . . . λi,r]
′
denotes an r× 1 vector of factor loadings for country i, and ei,t is

the idiosyncratic error term. A(L) and Bi(L) are lag polynomials. Finally, we assume that

ut, εi,t, and λi are mutually independent.

Estimations are carried out by the method of principal components. When ei,t is sta-

tionary, ft and λi can be consistently estimated irrespective of the order of ft. If ei,t is

integrated, however, the estimator is inconsistent because a regression of ri,t on ft is spuri-

ous. PANIC avoids such a problem by applying the method of principal components to the

first-differenced data. That is,

∆ri,t = λ
′

i∆ft + ∆ei,t (17)

for t = 2, · · · , T . Let ∆ri = [∆ri,2 · · ·∆ri,T ]′ and ∆r = [∆r1 · · ·∆rN ]. After proper nor-

malization, the method of principal components for ∆r∆r′ yields estimated factors ∆f̂t, the

associated factor loadings λ̂i, and the residuals ∆êi,t = ∆ri,t − λ̂
′

i∆f̂t. Re-integrating these,

we obtain the following,

f̂t =

t∑
s=2

∆f̂s, êi,t =

t∑
s=2

∆êi,s (18)
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for i = 1, · · · , N .
Bai and Ng (2004) show that when k = 1, the ADF test with an intercept can be used

to test the null of a unit root for the single common component f̂t. For each idiosyncratic

component êi,t, the ADF test with no deterministic terms can first be applied because êi,t
has a zero mean. Then, a panel unit root test statistic for these idiosyncratic terms can be

constructed as follows:

Pê =
−2
∑N

i=1 ln pêi − 2N

2
√
N

d→ N(0, 1). (19)

In Table 7, we report linear and nonlinear unit root test results for the estimated first

common factor. The tests reject the null of nonstationarity only for the case with the UK,

which implies that the first common factor is likely to be stationary.

Table 7 around here

In Figure 1, we plot the shares of variations of stock price deviations explained by the

first 5 common factors when the UK serves as the reference. Starting with initial 50%

observations, we use a recursive method to repeatedly estimate five common factors along

with shares of variations by those factors from each set of samples. The graph shows that

the first common factor explains roughly about 45% of total variations, while other common

factors play substantially smaller roles. Putting it differently, the stationary first common

factor seems to play a dominant role in determining the stochastic properties of ri,t in finite

samples.11

In Figure 2, we also report idiosyncratic factor loading coeffi cient estimates (λi) in Equa-

tion (16) that measure country-specific degrees of dependence of ri,t on the common factor.

The results show that the first common factor represents each of ri,t fairly well with a few

exceptions of Hong Kong and Singapore.

Figure 1 around here

Figure 2 around here

Note also that this first common factor resembles the dynamics of the proxy common

factor (cross-section means) in Equations (12) and (15) as we can see in Figure 3.

11However, it will be eventually dominated by nonstationary idiosyncratic component in the long-run.
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Figure 3 around here

In addition to evidence of the linear and nonlinear stationarity of the common factor

with the UK shown in Table 7, we compare the speeds of transitions from the ESTAR model

specification for the common factors with the US and with the UK. For this purpose, we

estimate the scale parameter θ in Equation (5) via the nonlinear least squares (NLLS) method

to evaluate the speed of transitions across the stationarity and nonstationarity regimes. Note

that we cannot estimate ξ and θ separately in Equation (6). Following Kapetanios, Shin,

and Snell (2003), we assume ξ = −1.

We report a sample transition function estimate along with the 95% confidence bands

in Figure 4. We note that the transition function for the common factor with the US

reference may be consistent with nonstationarity, because the 95% confidence band of θ

hits the zero lower bound, and we cannot reject the possibility of a single regime, which is

the nonstationarity regime.12 With the UK, the confidence band of the transition function

remains compact (θ̂ was 1.387 and the standard error was 0.583).

Figure 4 around here

This evidence explains why the panel unit root tests fail to reject the null of nonsta-

tionarity, even when the univariate test rejects the null for many countries. To control for

cross-section dependence, the test procedures incorporated in Equations (12) and (15) take

out the dominant stationary common component, but leave the nonstationary idiosyncratic

components. Hence, the panel tests might fail to reject the null of nonstationarity. However,

the univariate unit root tests may reject the null because the dominant stationary compo-

nent overpower the idiosyncratic component. We confirm this conjecture via Monte Carlo

simulations in the next section.

6 Further investigation on Panel Results: Monte Carlo

Simulation Analysis

We implement an array of Monte Carlo simulations in this section to see how plausible our

conjecture from the previous section is. For this purpose, we construct 17 time series that

have a factor structure with a nonlinear stationary common factor motivated by our panel

12 θ̂ was 1.805 and the standard error was 1.045, implying a negative value for the lower bound ( θ̂−1.96·s.e.).
Since θ is bounded below zero, the estimate assumes 0 for the lower bound.
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ESTAR model. We assume that each of the 17 idiosyncratic components is nonstationary.

That is, 17 time series variables xi,t share the following common component,

ft = ft−1 + ξft−1{1− exp(−θf 2t−1)}+ µt, (20)

where ξ is set at −1 following Kapetanios, Shin, and Snell (2003) and µt is a mean-zero i.i.d.

process.13 The DGP assumes θ = 1.387, which is the estimate from the previous section

for the 17 relative stock price indices relative to the UK. In addition to Equation (20), we

generate 17 independent nonstationary idiosyncratic components that are to be added to the

common factor to construct each time series as follows:

xi,t = λift + εi,t (21)

and

εi,t = εi,t−1 + ui,t, (22)

where ui,t ∼ N(0, 1). We used factor loading estimates (λi) from the PANIC estimations

in the previous section. Then we employ a nonlinear univariate unit root test and the

panel nonlinear unit root test. Repeating this process many times, we expect to see strong

evidence of stationarity from the univariate tests and weak evidence from the panel tests in

small samples, but weak evidence of stationarity from both types of tests in large samples

where nonlinear idiosyncratic components must eventually dominate the stationary common

factor.

We ran 3,000 Monte Carlo simulations for five different numbers of observations: 50, 100,

200, 300, and 500. In Table 8, we report the percentage of the mean and the median of the

frequency of the rejections of the null of unit roots out of 17 at the 5% significance level for

the univariate ESTAR tests. For the panel test, we report the rejection rate at the 5% level

for each exercise.

These simulation exercises confirm our conjecture described earlier. When the number

of observations is small, e.g., 50, the univariate ESTAR test rejects the null for many series

about 40 to 50% frequency on average. This tendency disappears quickly as the number of

observation increases. For example, when the number of observations is 500, only about 1

rejections out of 17 variables were observed. For all cases, the panel ESTAR that removes the

effect of the stationary common factor rejected the null with near 0.5% frequency. Therefore,

our empirical evidence suggests that stock indices with the UK as the reference country

are governed by a common factor that is nonlinear stationary, which makes it possible to

13As long as it is (modestly) negative, the stochastic process is globally stationary. Kapetanios, Shin, and
Snell (2003) used -1.5, -0.5, and -.01 in addition to -1.0.
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profitably utilize a contrarian strategy when deviations are large.

Table 8 around here

7 Concluding Remarks

We revisit the topic of mean reversion in national stock prices relative to the US and the UK

stock prices. Employing the MSCI annual gross stock index data for 18 developed countries,

we report strong evidence of nonlinear mean reversion for a maximum 14 out of 17 countries

when the UK, but not the US, serves the reference country, while very weak evidence of

linear mean reversion was observed irrespective of the choice of the reference.

Implementing panel linear unit root tests while controlling for cross-section dependence

provided weak evidence of stationarity. The panel nonlinear unit root test also failed to

reject the null of nonstationarity even when the UK served as the reference country, which

appears to be inconsistent with univariate test results.

To understand these puzzling empirical findings, we estimated a common factor via the

method of the principal component, then tested the null of nonstationarity with linear and

nonlinear stationarity alternatives. Our tests strongly favor the stationarity for the first

common factor from the panel when the UK serves as the reference country. These results

imply that the first common factor with the UK is stationary and dominates nonstationary

idiosyncratic components in small samples. That is, when the first common factor dominates

the nonstationary idiosyncratic component in finite samples, the panel unit root test that

removes the influence of the stationary common factor may yield evidence against stationarity

even though it behaves as a stationary variable in the short-run, although it will become

dominated by nonstationary variables in the long-run. Our Monte Carlo simulation exercises

confirm these conjectures.

Our empirical findings suggest that the UK equity index may be used as an anchor in

managing international equity portfolios. Big deviations of national equity prices from the

UK index may be accompanied by winner-loser reversal soon. Therefore, one may consider

short-selling better performing assets while buying worse performing ones. On the contrary,

one should employ the momentum strategy with the US index, because deviations of equity

prices are more likely to be permanent. This might explain the steady strong performance

of the US stock markets compared to those of other OECD countries.
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Table 1 Summary Statistics

Base Country: US
ID Country Mean Std Dev Skewness Kurtosis JB Min Max

1 Aus -0.41 0.33 -0.23 2.47 0.97 -1.24 0.13
2 Aut 0.09 0.59 0.21 3.00 0.36 -1.06 1.05
3 Bel 0.68 0.34 -0.44 3.51 2.00 0.00 1.27
4 Can -0.01 0.35 -0.19 2.61 0.59 -0.92 0.60
5 Den 0.78 0.38 -0.25 2.81 0.55 -0.14 1.45
6 Fra 0.16 0.24 0.17 3.62 0.96 -0.30 0.57
7 Ger 0.13 0.25 0.84 3.78 6.70 -0.34 0.70
8 HK 1.61 0.52 -0.29 4.47 4.91 0.00 2.62
9 Ita -1.07 0.51 0.73 3.64 5.04 -2.22 0.00
10 Jap 0.68 0.75 0.44 3.20 1.57 -0.40 2.35
11 Net 0.73 0.39 -0.02 2.12 1.51 -0.22 1.26
12 Nor 0.45 0.40 0.77 4.96 12.13 -0.47 1.24
13 Sing 0.73 0.51 0.45 4.30 4.89 -0.25 1.84
14 Spa -0.30 0.44 0.00 3.39 0.30 -1.36 0.85
15 Swe 0.86 0.52 0.18 2.05 2.03 -0.26 1.73
16 Swi 0.43 0.25 -0.03 2.96 0.01 -0.19 0.83
17 UK 0.25 0.24 -0.16 4.34 3.73 -0.46 0.69

Base Country: UK
ID Country Mean Std Dev Skewness Kurtosis JB Min Max

1 Aus -0.66 0.37 -0.29 2.37 1.42 -1.41 0.06
2 Aut -0.16 0.57 0.89 4.34 9.70 -1.06 1.51
3 Bel 0.43 0.29 -0.02 3.81 1.30 -0.17 1.17
4 Can -0.26 0.42 -0.04 3.13 0.05 -1.12 0.86
5 Den 0.53 0.42 0.21 3.13 0.37 -0.30 1.54
6 Fra -0.09 0.21 0.32 4.13 3.30 -0.55 0.60
7 Ger -0.11 0.27 1.62 9.18 95.18 -0.54 0.87
8 HK 1.36 0.44 -0.14 3.59 0.84 0.00 2.08
9 Ita -1.31 0.53 0.27 3.67 1.44 -2.03 0.14
10 Jap 0.43 0.65 0.51 3.29 2.18 -0.47 1.74
11 Net 0.48 0.31 -0.55 5.55 15.09 -0.38 0.95
12 Nor 0.20 0.41 1.04 5.43 20.04 -0.67 1.50
13 Sing 0.49 0.48 0.80 6.18 24.87 -0.46 1.48
14 Spa -0.55 0.55 0.19 5.10 8.92 -1.58 1.31
15 Swe 0.62 0.50 -0.20 4.64 5.60 -0.29 1.42
16 Swi 0.19 0.30 0.16 4.22 3.14 -0.36 0.82
17 US -0.25 0.24 0.16 4.34 3.73 -0.69 0.46

Note: JB refers the Jarque-Bera statistics, which has asymptotic χ2 distribution with 2 degrees

of freedom. For the US reference, most of the stock index deviation shows normality except for

Norway and the UK whereas the stock index deviations for 6 countries (Austria, Germany, the

Netherlands, Norway, Singapore and the US) show non-normality with the UK reference.
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Table 2. Univariate Linear Unit Root Tests

US UK
ADFc ADFt ADFc ADFt

Aus -2.22 -2.17 -2.10 -1.81
Aut -1.11 -2.20 -1.67 -2.82
Bel -2.64∗ -2.37 -3.07† -3.26∗

Can -1.30 -1.67 -1.66 -1.59
Den -2.31 -2.63 -1.77 -2.21
Fra -2.54 -2.41 -3.72‡ -3.70†

Ger -2.57∗ -2.70 -3.16† -3.26∗

HK -3.58‡ -3.69† -3.48‡ -4.37‡

Ita -1.55 -2.39 -2.47 -3.22∗

Jap -0.84 -2.18 -1.35 -2.83
Net -1.93 -0.94 -1.80 -3.63†

Nor -3.10† -3.18∗ -3.15† -3.26∗

Sing -2.14 -2.83 -2.24 -2.95
Spa -1.81 -1.80 -1.88 -1.79
Swe -1.76 -2.93 -1.65 -4.03‡

Swi -2.50 -2.71 -1.99 -2.33
UK -2.22 -1.99
US -2.22 -1.99

Note: ADFc andADFt denote the augmented Dickey-Fuller test statistic when an intercept and

when both an intercept and time trend are present, respectively. *, †, and ‡ denote significance

levels at the 10%, 5%, and 1% level, respectively.
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Table 3. Univariate Nonlinear Unit Root Tests

US UK
NLADFc NLADFt NLADFc NLADFt

Aus -1.21 -1.22 -2.27 -1.95
Aut -1.13 -2.53 -2.85 ∗ -3.62 †

Bel -1.98 -1.87 -3.00 † -3.31 ∗

Can -1.94 -2.03 -3.49 ‡ -3.30 ∗

Den -2.27 -2.60 -2.56 -3.13 ∗

Fra -2.52 -2.34 -2.60 -2.56
Ger -2.51 -2.59 -2.82 ∗ -2.89
HK -2.76 ∗ -2.86 -2.71 ∗ -3.70 †

Ita -1.26 -2.29 -3.19 † -4.46 ‡

Jap -1.10 -1.99 -1.90 -2.12
Net -1.43 -0.88 -1.89 -4.04 ‡

Nor -2.07 -2.19 -2.69 ∗ -2.80
Sing -2.10 -2.59 -2.29 -3.20 ∗

Spa -2.20 -2.25 -2.74 ∗ -2.86
Swe -1.72 -2.04 -1.22 -3.39 ∗

Swi -2.06 -2.70 -2.58 -2.98
UK -4.76 ‡ -4.46 ‡

US -4.76 ‡ -4.46 ‡

Note: NLADFc and NLADFt denote the ESTAR test statistic (Kapetanios et al., 2003) when

an intercept and when both an intercept and time trend are present, respectively. *, †, and ‡
denote significance levels at the 10%, 5%, and 1% level, respectively. Asymptotic critical values

were obtained from Kapetanios et al. (2003).
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Table 4 Cross Section Dependence Test (Pesaran)

CSD P-value

US 25.91 0.00
UK 20.74 0.00

Note: This test is proposed by Pesaran (2004).
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Table 5. Panel Linear Unit Root Test Results

PADFc PADFt

US -2.18 -2.74
UK -2.09 -2.75

Note: PADFc and PADFt the panel ADF test statistic (Pesaran, 2007) when an intercept

and when both an intercept and time trend are present, respectively. The test fails to reject the

null of nonstationarity for both reference countries. Critical values from Pesaran at 5% for N =

15 and T = 50 are -2.25 and -2.76 for c and t, respectively.

Table 6. Panel Nonlinear Unit Root Test Results

NLPADFc NLPADFt

US -1.40 -1.52
UK -1.35 -1.55

Note: NLPADFc and NLPADFt the panel ADF test statistic (Cerrato et al., 2011) when

an intercept and when both an intercept and time trend are present, respectively. The test fails

to reject the null of nonstationarity for both reference countries. Critical values from simulaton

(#iter: 100,000, nob: 523, nov: 16) at 5% are -2.24 and -2.74 for c and t, respectively.
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Table 7. Test for first common factors (Bai and Ng)

ADFc ADFt NLADFc NLADFt

US -2.45 -2.26 -2.43 -2.18
UK -2.81∗ -2.91∗ -3.84‡ -4.03‡

Note: *, †, and ‡ denote significance levels at the 10%, 5%, and 1% level, respectively.
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Table 8. Simulation Results

Univariate ESTAR Panel ESTAR
NLADFc NLADFt NLPADFc NLPADFt

nob=50 Median 41.2 % 47.1 % 0.7 % 0.4 %
Mean 41.6 % 48.3 %

nob=100 Median 29.4 % 35.3 % 0.3 % 0.5 %
Mean 28.5 % 33.6 %

nob=200 Median 17.6 % 17.6 % 0.1 % 0.0 %
Mean 17.2 % 20.5 %

nob=300 Median 11.8 % 11.8 % 0.2 % 0.0 %
Mean 12.9 % 15.0 %

nob=500 Median 5.9 % 11.8 % 0.2 % 0.0 %
Mean 9.4 % 10.8 %

Note: The table shows simulation results. Numbers in the Univariate ESTAR section represent

percentage of the mean and median of the frequency of rejections of the null of unit roots when

univariate ESTAR test is employed for the 3000 iterations. Numbers in the Panel ESTAR

section represent percentage of rejections of the null of unit roots when the Panel ESTAR test

is employed for the 3000 iterations.
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Figure 1. Cumulative Share of Variation by Five Common Factors: UK

Note: A recursive method is used to repeatedly estimate the first five common factors using

the initial 50% observations as the split point. We report shares of variations explained by the

common factors from each set of samples.
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Figure 2. Factor Loading Coefficients Estimation: UK

Note: We report factor loading coefficients (λi) in Equation (16). They represent the country-

specific dependence on the common factor.
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Figure 3. First Common Factor Estimates: UK

Note: We report two measures of the common factor: the first common factor (dashed line) via

the PANIC (Bai and Ng, 2004) and the cross section mean (solid) as in Pesaran (2007).
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Figure 4. Transition Function Estimates

Note: We report graphs of one minus the exponential transition function 1− exp(−θx2) for the

common factor estimates with the US and the UK. We used θ = 1.805 for the US reference and

θ = 1.387 for the UK reference, obtained from the data. Dashed lines are 95% confidence bands.

The lower bound for the US is negative, so we used 0 because θ is bounded below zero.
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